Jaroslav Vlach

LAMPÁRNA

aneb Co to zkusit s elektronkami?

Jaroslav Vlach

Lampárna aneb Co to zkusit s elektronkami?

Bez předchozího písemného svolení nakladatelství nesmí být kterákoli část kopirována nebo rozmnožována jakoukoli formou (tisk, fotokopie, mikrofilm nebo jiný postup), zadána do informačního systému nebo přenášena v jiné formě či jinými prostředky.

Autor a nakladatelství nepřejímají záruku za správnost tištěných materiálů. Předkládané informace jsou zveřejněny bez ohledu na případné patenty třetich osob. Nároky na odškodnění na základě změn, chyb nebo vynechání jsou zásadně vyloučeny.

Všechny registrované nebo jiné obchodní známky použité v této knize jsou majetkem jejich vlastníků. Uvedením nejsou zpochybněna z toho vyplývající vlastnická práva.

Veškerá práva vyhrazena.

- © Jaroslav Vlach, Praha 2004
- © Viktorie Vlachová, Praha 2004 ilustrace

Nakladatelství BEN – technická literatura, Věšínova 5, Praha 10

Jaroslav Vlach: Lampárna aneb Co to zkusit s elektronkami?

BEN – technická literatura, Praha 2004

1. vydání

ISBN 80-7300-091-1

Kniha je určena široké technické veřejnosti, začinajícím i pokročilým konstruktérům nizkofrekvenčních zesilovačů, hudebníkům, kteří chtějí něco vědět o možnostech a konstrukci elektronkových zesilovačů, i dalším zájemcům o téma, které nepatři v naší literatuře k nejfrekventovanějším. Kromě exkurze do historie popisuje principy elektronek a nizkofrekvenčních elektronkových zesilovačů, přináší konstrukci výkonového zesilovače a v přiloze rovněž přehled parametrů dnes nejčastěji používaných elektronek. Doplněna je rovněž o odkazy na další možné zdroje informací.

TEN PAN LEE DE FOREST SE ASI 2BLAZNIL.
JEDNOMU RYKA' ANODA, DRUHEMU KATODA
A DA'YA' MEZI NE MELZKY!

Touto cestou děkují především své sestře Viktorii Vlachové za spolupráci při vzníku této knižky, svému kolegovi Rolfovi Diringeroví za praktické rady a zkušenosti a dále pak firmám GES-ELECTRONICS z Plzně a JJ Electronic z Čadce (Slovensko) za poskytnutí aktuálních katalogových údajů a dalších informací.

O knize (před jejím vydáním) napsali a řekli:

Předložená kniha je velmi pěkně, stručně a výstižně zpracovanou problematikou, týkající se elektronek. Domnívám se, že samotný název, který byl mimochodem velmi vhodně zvolen, již napovídá, že se bude jednat o zajímavou problematiku a věřím, že si ji zakoupl velký počet čtenářů, a to i těch, kteří se s elektronkami nikdy nesetkali.

Sám jsem elektronky používal, i když krátce, a dokáži si představit takový ten správný pocit, když se elektronkový zesilovač "rozsvítil" a postupně se "zahříval". Celý text je vhodně doplněn velmi názornými obrázky a je patrný velmi vřelý vztah autora k dané problematice. Za pozornost stojí i to, že čtenářům mohu vřele doporučit velmi zajímavé odkazy na WWW stránky, uvedené na konci textové částí knihy.

I když kniha není vyčerpávající, resp. pokrývající všechny aspekty této problematiky, jedná se o ucelenou, přehledně a poutavě zpracovanou oblast.

Ing. Jiří Hozman

Konečně v této zemi vychází publikace, která souhrně a jasně objasňuje základy elektronkových audio zesilovačů. Tato publikace ulehčí život při vyhledávání a ověřování informací o technologii, kterou mladší generace nemá zažitou aní ze škol, natož z výrobní praxe. Zájemcí o elektronky již nebudou muset být zcela odkázání na polité knížky se zažloutlými strankami nevalného zápachu z obdobně naoderovaných bazarů a antikvariátů.

Přeji tímto této knize, aby brzy obdržela četné sourozence a rozšířila tak rodinku našich oblíbených publikací v našich odborných knihovničkách, kde se tak rádí a neustále hrabeme (k nekonečné radosti našich manželek a příbuzných), protože, upřímně řečeno, kdo si to má všechno pamatovat – když od toho jsou knížky !!!

Mgr. Filip Robovski

Pár bláznů je opěvuje, zatímco ti "normální" nechápou a koukají na ty blázny skrz prsty. Patřím k těm prvním. A cože to opěvuji? Věc tak prostou a přitom tak složitou, nádherný klenot, bez nějž by nebylo rádia ani televize – elektronku. Proto jsem autorovi i nakladateli vděčný za to, že po dlouhé době vyšla kniha, která má šancí alespoň z několika těch "normálnich" udělat ty pravé "blázny", vysvětlit jim, že elektronka ještě zdaleka nepatří na smetiště dějin.

Elektronka je nejen zázrak techniky, ale i náramně krásná věc. Pár důmyslně pomotaných drátků, kousek plíšku, to celé umně naaranžované ve skleněné vitrince doplněné slušivým zrcátkem getru... a bože, ono to hraje, ono to zpívál Za mnohé vděčíme elektronkám, bez nich by nebyly vymoženosti moderní elektroniky vůbec myslitelné. Snad tato kniha pomůže v tom, aby lesk skleněných baněk a oranžový svit katod v novém tisíciletí nezmizel z tohoto světa...

Petr Svoboda

Budiž tato kniha také impulzem pro ty, kteří se problematikou elektronek zabývají a kteří se sepsáním svých poznatků a zkušeností ještě otálejí.

Např. v sousedním Německu také vycházejí knihy na problematiku elektronek pro širší odbornou veřejnost. Avšak tato kniha je svojí použitelností pro praxi značně převyšuje. Mohu to potvrdit, neboť jsem dvě německá nakladatelství v červenci 2003 osobně navštívil.

Libor Kubica

Obsah

	ÚVOD	9
1	PROČ ELEKTRONKY?	10
2	TEORETICKÉ ZÁKLADY	12
2.1	Historie	12
2.2	Princip elektronky	13
2.3	Konstrukce elektronek	
2.4	Značení a tvary elektronek	18
3	ZÁSADY PRO KONSTRUKCI	
	ZAŘÍZENÍ S ELEKTRONKAMI	20
3.1	Dioda	20
3.2	Základní zapojení zesilovače s elektronkou	21
3.3	Třídy zesilovačů	25
3.3.1	Třída A	
3.3.2	Třída AB	
3.3.3	Třida B	
3.4	Návrh transformátoru	
3.4.1 3.4.2	Síťový transformátor	
4	PŘÍKLADY KONSTRUKCE	
12.5	ELEKTRONKOVÝCH NF ZESILOVAČŮ	38
4.1	Zesilovače s jednočinným koncovým stupněm	42
4.1.1	Zesilovač s jedinou dvojitou elektronkou PCL86	42
4.1.2	Zesitovač s jednou koncovou pentodou EL34	
4.1.3	Další zapojení jednočinných zesilovačů	
4.2 .1	Zesilovače s dvojčinným koncovým stupněm	
4.2.1	Zesilovač se dvěma EL34 zapojenými	
4.2.2	Další zapojení dvojčinných koncových stupňů	

4.3	Elektronky v obvodech zesilovacu	
4.3.1	Klasický korekční předzesilovač	57
4.3.2	Korekčni předzesilovač typu MARSHALL	
4.3.3	Korekční předzesilovač typu FENDER	
4.3.4	Elektronkový předzesilovač pro unipolární koncový stupeň .	
4.3.5	Omezení brumu způsobeného síťovým napájením	
4.3.6	Prodloužení životnosti elektronkových zesilovačů	70
5	JEN STRUČNĚ	
	O OSCILOSKOPU A OBRAZOVKÁCH	71
6	ZÁVĚR	76
1970		ter-mental language and
Liter	atura a odkazy	77
Knih	y a další publikace	77
	ky v časopisech	
Cian	ky v casopisecii	70
inter	netové odkazy	7 0
7	KATALOGOVÉ PŘÍLOHY	80
Znad	čení elektronek	80
Evro	pské značení (vč. starého značení TESLA)	80
	ké značení	
	rty patic	
	odni tabulka elektronek	
Kata	llogová část	86
	ECC81, 12AT7	86
	ECC82, 12AU7	87
	ECC83, 12AX7, 7025	88
	ECC832, 12DW7	89
	ECC88, E88CC, 6DJ8, 6922	90
	ECC99	91
	PCL86	92
	ECC832, 12DW7	93
	E100E 6600	44
	E180F, 6688	OF.
	EL34, E34L, 6CA7	95
	EL34, E34L, 6CA7	95

	KT88, 6550	
	6L6 GC, 5881	
	300B	103
	ovnání zkreslení a výkonu	
na	a druhu zapojení a použitých elektronek	
	7QR20	105
	nam použitých symbolů	
Rozi	měry elektronek	107
8	PROGRAM	
	TONE STACK CALCULATOR 1.3	108
9	KVALITNÍ ELEKTRONKOVÉ ZESILOVAČE	
	FIRMY JJ ELECTRONIC	112
-	TIKMT OF ELECTRONIC	112
10	ROZHOVOR S MGR. FILIPEM ROBOVSKÝM,	
	ELEKTRONKOVÝM ENTHUZIASTOU	
	A BASKYTARISTOU SKUPINY KRYPTOR	118
11	MALÁ EXKURZE VE FIRMĚ JJ ELECTRONIC	SEE SEE
	ANEB VÝROBA KVALITNÍCH	
		2000
	ELEKTRONEK NA SLOVENSKU	132
Díly	pro stavbu zesilovačů	148
Mon	otématické DVD o elektronkách a zesilovačích	150
Adre	esy prodejen technické literatury	151
	slov o nakladatelství	

Možná se Vám už někdy stalo, že Vás někdo poslal hledat odpověď na váš dotaz "do lampárny na nádraží". Lampy, nebo technicky lépe elektronky, byly (a jak lze nejen v této knížce zjistit, dosud jsou) elektronickými prvky, které do značné míry změnily postavení a význam elektrotechniky a elektroniky v průběhu první poloviny 20. století. Od padesátých let jejich význam postupně slábnul, prakticky na většině pozic byly elektronky postupně nahrazovány novými prvky polovodičovými. Avšak stále se najdou fandové, milovníci starých nebo klasických řešení. sběratelé či muzikanti, kteří na elektronky nedají dopustit. Jestliže ve většině elektronických zařízení se nelze vracet k překonaným řešením, tak zrovna v oblastí profesionálních i amatérských nízkofrekvenčních zesilovačů pro hudební nástroje (zejména kytary) se stále častějí objevují konstrukce výkonových nizkofrekvenčních zesilovačů osazených elektronkami. Tato zařízení nacházejí uplatnění především pro svůj charakteristický zvuk, který tranzistorový zesilovač nedokáže nahradit. Řada světových výrobců profesionálních nízkofrekvenčních zařízení nabízí takové zesilovače v cenových relacích, nad nimiž se mnohdy až tají dech. Před třicetí lety isme se s těmito zařízeními mohli běžně setkat i v naší technické literature, dnes se však po nich siehla zem. Je proto dost možné, že navozené téma vzbudí u někoho rozpaky, u někoho tiché nostalgické vzpomínky, u někoho však i pobídku ke konstrukci a výrobě takového zařízení. V každém případě: není to krásný pohled na elektronku jako na výtvor lidského umu?

TY SE VRACIS K TRADICI ELEKTRONEK, JA SE VRACÍM K TRADIČNÍ KUCHYNI. K OBĚDU MAME HRACH A KROUPY!

1

PROČ ELEKTRONKY?

Kdysi dávno (dnes už mohu říci: v minulém století) jsem jako začínající elektronik požádal svého otce, který byl v té době již zdatným konstruktérem (měl za sebou konstrukci rádií, zesilovačů, kondenzátorových mikrofonů i televizního přijímače s malou zelenou kulatou obrazovkou, která mi v mém dětství asi učarovala), aby mi na první stránku mého sešitu, s nímž jsem tehdy chtěl začít své působení v oblasti elektroniky, nakreslil lampu. Otec vzal tužku a beze slova nakreslil toto:

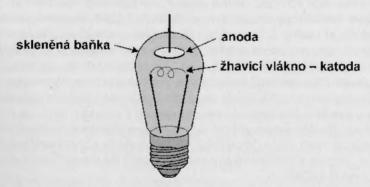
Na to jsem mu tehdy odvětil něco v tom smyslu, že jsem myslel něco jiného. Otec řekl: "Chtěl jsi nakreslit lampu, tak jsem ti ji nakreslil. Kdybys chtěl nakreslit elektronku, to by bylo něco jiného". A tak jsem tehdy jednou provždy pochopil rozdil mezi lampou a elektronkou.

Slova lampa či elektronka dnes prakticky nikomu mnoho neříkají. A přece díky této elektronické součástce se technický pokrok ve 20. století výraznou měrou posunul vpřed. J. A. Fleming v roce 1904 doplnil Edisonovu žárovku o další elektrodu a vynalezl tak usměrňovací diodu. Na to navázal v roce 1907 další američan Lee de Forest objevem elektronky s řídicí elektrodou (tzv. audion). Tím byl odstartován rozmach nových oborů lidské činnosti: elektroniky, radiotechniky, vysílací techniky, výpočetní techniky a dalších oblastí. Do roku 1948 neměla elektronka prakticky konkurenta. Od toho roku, kdy byl objeven tranzistor, musela elektronka svádět urputný boj o svoji existenci, až definitivně musela ustoupit v polovině 60. let z většiny svých pozic. A počátkem 80. let zmizela i z jednoho z posledních míst v přístrojích pro domácnost – z obvodu vysokého napětí barevného televizoru. Dnes se s elektronkou vlastně setkáme ještě tak na místě obrazovky televizoru a počítače, ale i zde mají, jak se zdá, odzvoněno.

V posledních letech je v mnoha oborech lidské činnosti patrný návrat k historii, mnohdy však bez nostalgie, ale s plnou funkčnosti. Objevují se plně funkční repliky nejen starých značek automobilů či motocyklů, ale i zesilovačů, elektronek a dalších přístrojů. Mnozí mohou namítnout, že v tom je určitá dávka snobství či nedostatek nových podnětů. Je to však určitý důkaz "vývoje ve spirále", kdy staré se po určité době znovu opakuje v obměněné podobě.

Lze tak bez nadsázky říci, že elektronka hned tak nezmizí v technickém muzeu. Za příklad může sloužit např. výkonová trioda 300B, kterou v roce 1935 uvedla na americký trh firma Western Electric. Tato elektronka se vyrábí dodnes a patří mezi populární elektronky u konstruktérů zesilovačů pro hudební nástroje nebo pro domácí poslech. Ukazuje se totiž, že v současné době je kromě technických vlastností zařízení neopomenutelným faktorem i jeho estetický vzhled. Snad právě pro tuto lidskou vlastnost se lidé cítí dobře u krbu s opravdovým plápolajícím ohněm. Radost z dobře fungujícího zesilovače může být významně umocněna pohledem na skleněné baňky elektronek, žhnoucí malým červeným světélkem a sálající teplo. Není pochyb o tom, že právě proto se skoro všechny nové elektronkové zesilovače vyznačují otevřenou konstrukcí, u níž se snoubí sklo a lesklý plech. Proto se některé elektronky vyrábějí v různých barevných variantách.

Nízkofrekvenční zesilovače s koncepcí, která přečkala téměř půlstoletí, se vyráběly v tehdejším n. p. TESLA Pardubice od roku 1950 (KZ25, resp. KZ50), tehdy ještě s koncovými pentodami typu 4654. U těchto elektronek docházelo často k jejich přehřátí nebo mechanickému poškození (např. upadla čepička s anodovým vývodem, nebo se odlepovala bakelitová objímka od skleněné baňky apod.). V polovině 50. let se ve výrobním programu n. p. TESLA Rožnov objevila elektronka EL34. což byl evropský ekvivalent americké výkonové pentody 6CA7. Díky svým vlastnostem se tato elektronka vyrábí a používá již více než 50 let. Konstrukce této elektronky umožňuje při dvojčinném zapojení koncového stupně konstruovat koncové nízkofrekvenční zesilovače s výstupním výkonem až 100 W. Zesilovače AZK 201, resp. AZK 401 (tzv. "šedivé placky"), vyráběné od roku 1961 v n. p. TES-LA Valašské Meziříčí (a později v n. p. TESLA Vráble), osazené právě dvojící elektronek EL34, patřily k zařízením, která hojně využívalí muzikanti a hudební skupiny ještě řadu let. Na ně později navázaly zesilovače AZK 405 (MONO 50), AZK 160 (MONO 130), AZK 360 (MUSIC 130), resp. AZK 450 (MONO 70). Konstrukce uvedených zesilovačů vycházela z dnes už překonané koncepce rozvodu výstupního signálu o napětí 100 V, která předpokládala vybavení reproduktorové soustavy převodním transformátorem pro převod z rozvodu 100 V na impedanci reproduktoru. Novější zesilovače už byly vybaveny transformátorem s převodem na impedanci 8, resp. 15 Ω. Od poloviny 70, let převládly už polovodičové koncové zesilovače, nejprve s bipolárními tranzistory, později též s tranzistory unipolárními (obvykle typu V-MOS).

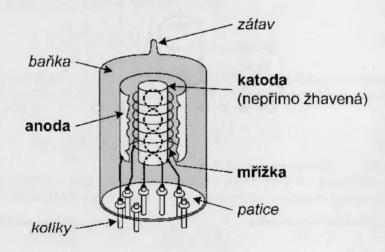

V současné době se výrobou elektronkových zesilovačů zabývá řada v profesionálním světě známých firem, jako je např. Marshall, Heathkit, Lamm Industries, Dynaco, Fender, Rocktron, Peavey, D. Berning, Hoffman Amplifiers, Marantz, Hughes & Kettner, Vox, ASV – M. Šebart a další, rovněž u nás se touto problematikou zabývá několik nadšenců i firem. Nedá se tedy (bohudíky) říci, že by těma elektronkových zesilovačů bylo zapomenuto.

2

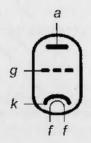
TEORETICKÉ ZÁKLADY

2.1 HISTORIE

Již známý vynálezce a podnikatel T. A. Edison při svých pokusech se žárovkou kolem roku 1880 zijstil, že kolem rozžhaveného vlákna žárovky (tehdy ještě uhlikového) se vytváří oblak, který postupně znehodnocuje tmavým zákalem vnitřní stěnu baňky. V roce 1883 získal za jím popsaný tzv. Edisonův jev americký patent. Zjistil totiž, že ve vakuu teče z rozžhaveného vlákna elektrický proud. Později, v roce 1904, kdy už se používalo žhavicí vlákno z wolframu a v baňce bylo dosahováno vyššího vakua, britský fyzik John Ambrose Fleming zatavil do baňky žárovky destičku, stejně jako u žárovky vysál z baňky vzduch a na destičku přiváděl různá napětí (obr. 2.1). Zjistil, že při větším kładném napětí oproti vláknu začíná tímto obvodem téci elektrický proud, třebaže mezi vláknem a destičkou není viditelně žádné vodivé prostředí. Jev vedení elektrického proudu ve vakuu byl vysvětlen pohybem nosičů náboje (záporně nabité elektrony) směrem od záporně nabité elektrody – катору – ke kladně nabíté elektrodě - ANODĚ. Tento nový prvek se dvěma elektrodami byl nazván dioda. Hlavním využitím tohoto prvku se stalo usměrnění střídavého proudu. Později byly rovněž vyzkoušeny a popsány i další druhy vedení proudu ve vakuu, kdy k emisi elektronů dochází nejen vložením energie tepelné (rozžhavením emitující katody), ale např. energie světelné (fotonky apod.).



Obr. 2.1 Elektronka - dioda


Možnostmi řízení proudu ve vakuu se zabývalo více vědců. V roce 1907 si nechal v New Yorku Lee de Forest patentovat součástku pod názvem *Audion*, do níž byla vložena mezi katodu a anodu další elektroda ve tvaru drátěné mřížky. Touto mřížkou mohly elektrony nejen procházet, ale přivedením napěti bylo možno ovládat proud elektronů mezi katodou a anodou. Vznikla tak elektronka se třemi elektrodami – **trioda**. Skutečnost, že tak vznikl první zesilovací prvek, měla pro další vývoj elektroniky velký význam.

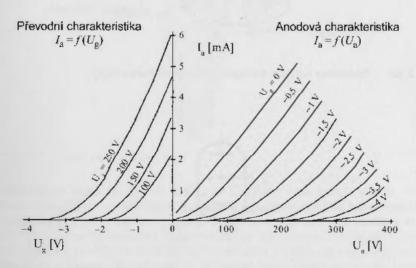
2.2 PRINCIP ELEKTRONKY

Na obr. 2.2a je znázorněn principiální náčrt konstrukce elektronky – triody. Ve skleněné baňce, z níž je vyčerpán vzduch, jsou soustředně umístěny jednotlivé části triody: katoda (obvykle nepřímo žhavená žhavicím vláknem), drátěná mřižka a vnější kovová anoda. Všechny elektrody jsou vyvedeny přes kolíky patice. Schematická značka triody je uvedena na obr. 2.2b. Její názornost je zcela jistě zřejmá, takže není třeba ji podrobněji vysvětlovat. Připomeňme jen, že vývod anody se označuje písmenem a, vývod katody písmenem k, vývod mřížky písmenem g (z angl. grid) a vývody žhavicího vlákna písmeny f (z anglického výrazu filament – žhavicí vlákno).

Obr. 2.2a Elektronka – trioda; principiální náčrt konstrukce triody



Obr. 2.2b Elektronka – trioda; schématická značka triody


Na obr. 2.3 je znázorněno základní zapojení triody v elektrickém obvodu. Pracovní bod triody je určen anodovým napětím $U_{\rm a}$, anodovým proudem $I_{\rm a}$ a mřížkovým napětím $U_{\rm g}$ (mřížka je vzhledem ke katodě záporná, mřížkový proud je nulový). S rostoucím vstupním napětím u_1 na mřížkovém odporu $R_{\rm g}$ se zvětšuje anodový proud $I_{\rm a}$, zmenšuje se anodové napětí $U_{\rm a}$ a zvětšuje výstupní napětí u_2 na odporu $R_{\rm a}$.

Napěťové zesílení elektronky A_U je dáno vztahem:

$$\mathbf{A}_{\mathbf{U}} = \frac{u_2}{u_1} \tag{2.1}$$

Obr. 2.3 Základní zapojení triody

Obr. 2.4 Modelová charakteristika elektronky – triody

Vlastnosti elektronky se popisují statickými charakteristikami. Na obr. 2.4 je znázorněna modelová charakteristika elektronky – triody. V levé části je znázorněna parametrická závislost anodového proudu l_a na mřížkovém napětí U_g pro různá anodová napětí U_a , která se nazývá převodní charakteristikou elektronky (angl. transfer characteristic), v pravé části je znázorněna parametrická závislost anodového proudu l_a na anodovém napětí U_a pro různá mřížková napětí U_g , která se nazývá anodovou charakteristikou elektronky (angl. plate characteristic).

Dynamické vlastnosti elektronky pro malé změny signálu popisují diferenciální parametry pro daný pracovní bod:

Strmost **S** (angl. slope, mutual conductance, transconductance) je poměr přirůstku anodového proudu $\Delta I_{\rm a}$ k přírůstku mřížkového napětí $\Delta U_{\rm g}$ při konstantním anodovém napětí $U_{\rm a}$ a udává se obvykle v [mA/V]:

$$S = \frac{\Delta I_a}{\Delta U_a}$$
, při $U_a = \text{konst.}$ (2.2)

Vnitřní odpor R_i (angl. plate impedance) je poměr přírůstku anodového proudu $\Delta I_{\rm a}$ k přírůstku anodového napětí $\Delta U_{\rm a}$ při konstantním mřížkovém napětí $U_{\rm g}$ a udává se obvykle v [k Ω]:

$$R_{\rm i} = \frac{\Delta U_{\rm a}}{\Delta I_{\rm a}}$$
, při $U_{\rm g}$ = konst. (2.3)

Zesilovací činitel μ (angl. amplification factor) je poměr přírůstku anodového napětí $\Delta U_{\rm a}$ k přírůstku mřížkového napětí $\Delta U_{\rm g}$ při konstantním anodovém proudu $U_{\rm a}$:

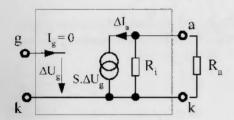
$$\mu = \frac{\Delta U_a}{\Delta U_a}$$
, při U_a = konst. (2.4)

Průnik D (angl. penetrance) je převrácenou hodnotou zesilovacího činitele:

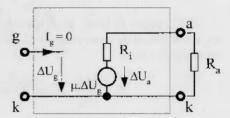
$$D = \frac{1}{\mu}. (2.5)$$

Mezi diferenciálními parametry elektronky v daném pracovním bodě platí tzv. Barkhausenův vztah:

$$\mathbf{S} \cdot \mathbf{R}_{\mathbf{i}} \cdot \mathbf{D} = 1 \tag{2.6}$$


Pracovní bod P je jednoznačně určen trojicí odpovídajících hodnot $U_{\rm a}$, $I_{\rm a}$ a $U_{\rm g}$ (obvykle tyto hodnoty zjistíme z katalogu pro konkrétní elektronku). Pro tento pracovní bod definujme anodový odpor v pracovním bodě vztahem:

$$R_{\mathbf{p}} = \frac{U_{\mathbf{a}}}{I_{\mathbf{a}}}$$
, pro $U_{\mathbf{g}}$ = konst. (2.7)


Na *obr.* 2.5 jsou znázorněna náhradní zapojení elektronky pro malé změny signálu v okolí pracovního bodu P. Vstupní odpor $R_{\rm g}$ lze v tomto případě považovat za nekonečně velký, takže vstupní proud $I_{\rm g}=0$. Na *obr.* 2.5a je náhradní zapojení se zdrojem proudu $\Delta I_{\rm a}$ řízeného napětím $\Delta U_{\rm g}$, ze vztahu (2.2) plyne $\Delta I_{\rm a}=S$. $\Delta U_{\rm g}$ (kde S je strmost). Vnitřní odpor elektronky $R_{\rm i}$ je zapojen paralelně k řízenému zdroji proudu. Na *obr.* 2.5b je náhradní zapojení se zdrojem napětí $\Delta U_{\rm a}$ řízeným napětím $\Delta U_{\rm g}$. ze vztahu (2.4) plyne $\Delta U_{\rm a}=\mu$. $\Delta U_{\rm g}$ (kde μ je zesilovací činitel). Vnitřní odpor $R_{\rm i}$ je v tomto případě zapojen v sérii s řízeným zdrojem napětí.

Zatěžovací odpor R_a se v náhradním zapojení připojuje mezi svorky **a** a **k**, takže odpory R_a a R_i potom tvoří dělič napětí. Po zesílení A_u lze potom odvodit vztah

$$\mathbf{A}_{0} = \mu \cdot \frac{R_{a}}{R_{i} + R_{a}} \tag{2.8}$$

Obr. 2.5a Náhradní zapojení s řízeným zdrojem proudu

Obr. 2.5b Náhradní zapojení s řízeným zdrojem napětí

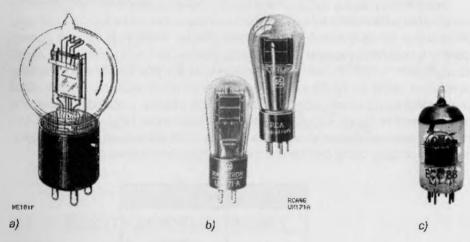
2.3 KONSTRUKCE ELEKTRONEK

První elektronky vycházely z konstrukce žárovky, z níž převzaly způsob emitování elektronů z rozžhaveného vlákna katody (tzv. přímo žhavená katoda). Později vývoj dospěl ke dvěma druhům tzv. nepřímo žhavené katody: thoriovaná katoda a katoda s povrchem tvořeným oxidem baria nebo stroncia. Thoriovaná katoda je při teplotě 2400 °C mnohem lepším zdrojem elektronů, nežli prapůvodně používané wolframové vlákno, vyznačuje se poměrně vysokou životností a dobrou odolností na vysoké napětí. Používá se pro výkonové elektronky. Katodu s povrchem tvořeným oxidem baria nebo stroncia není třeba žhavit na tak vysokou teplotu (kolem 1000 °C), může se však zničit vysokým napětím. Používá se pro malé elektronky.

V průběhu vývoje elektronek se používalo několika způsobů napájení žhavicího vlákna. Zpočátku bylo nejpoužívanějším napájení žhavicího vlákna stejnosměrné nebo střídavé napětí 4 V (v Evropě řada elektronek A), příp. malé napětí ze žhavicí baterie 1,2 nebo 1,4 V (řada D). Později se velmi rozšířilo napájecí napětí 6,3 V, které se stalo na dlouhou dobu jakýmsi hlavním napětím pro žhavení (elektronky řady E patří k nejrozšířenějším). Vedle toho se objevily i typy elektronek pro tzv. univerzální přístroje, přizpůsobené pro napájení z různých variant tehdy rozšířených napájecích soustav 110 V, 120 V, příp. 220 V střídavých i stejnosměrných (řada V a později U). Protože úmyslem bylo žhavicí vlákna všech elektronek v přistroji propojit do série, byla vlákna konstrukčně navržena pro shodnou hodnotu procházejícího proudu. Koncem 40. let se v Evropě začaly vyrábět elektronky se sériovým napájením žhavení s proudem 300 mA (řada P). Tato řada se udržela velice dlouho především zásluhou televizních přijímačů.

Postupným vývojem były do baňky mezi katodu a anodu přidávány další mřížky, kterými bylo možno do určité míry ovlívňovat anodový proud a rovněž charakteristiku elektronky. V *tabulce 1* je uveden stručný přehled názvosloví elektronek rozlišených podle počtu mřížek.

Kromě katody, anody a příslušného počtu mřížek si u elektronky jistě všímneme uvnitř baňky ještě malého kovového držáčku ve tvaru misky nebo kroužku, nad nímž je na vnitřní straně skleněné baňky stříbřitá skvrna. Jedná se o tzv. getr (z angl. getter). K dosažení vysokého vakua v baňce (řádově 10⁻⁷ torr) je totiž třeba "spálit" zbytky kyslíku, k čemuž slouží malé množství kovu (obvykle barium nebo jeho sloučenina) umístěné při výrobě v misce a které se po odsátí vzduchu z baňky zapálí a ve vzniklé reakci se tak spotřebuje zbylý vzduch z baňky. V důsledku této reakce vznikne uvnitř baňky charakteristická stříbrná skvrna na skle (angl. getter flash), která je současně indikátorem stavu vakua v baňce. Vnikne-li do baňky vzduch, skvrna se zbarví do běla, což je oxid baria a značí znehodnocení funkce elektronky.


Počet mřížek	Název elektronky
0	Dioda
1	Triođa
2	Tetroda
3	Pentoda
4	Hexoda
5	Heptoda (pentagrid)
6	Oktoda
7	Enneoda

Tabulka 1 Názvosloví elektronek

2.4 ZNAČENÍ A TVARY ELEKTRONEK

První elektronky označoval každý výrobce svým způsobem. Teprve větší rozmach výroby elektronek v Evropě přinutil firmy Philips, Telefunken a Tungsram zavést v roce 1935 jednotné značení elektronek. Později se ustálilo několik druhů značení: tzv. americké, evropské a ruské (v azbuce). Aby to vše nebylo tak jednoduché, existuje mnoho typů stejných nebo obdobných elektronek, které tze nalézt pod různými označeními u různých výrobců. V posledních dvaceti letech se množství elektronek a jejich nabídka výrazně ztenčila, protože se současně výrazně zmenšil okruh oblastí jejich použití. V příloze knížky lze nalézt přehled značení elektronek a katalogové údaje několika významných typů elektronek, které se dnes používají zejména v oblasti nízkofrekvenčních zesilovačů.

Provedení elektronek se od jejich vzniku měnilo. Jestliže první měly tvar velmi podobný žárovce (vždyť i výrobou se obvykle zabývaly stejné firmy na stejných zařízeních) – viz *obr.* 2.6a, postupně se jejich tvary měnily a zdokonalovaly – *obr.* 2.6b. Měnily se tvary, zdokonalovala se technologie výroby a velikost se zmenšovala – *obr.* 2.6c.

Obr. 2.6

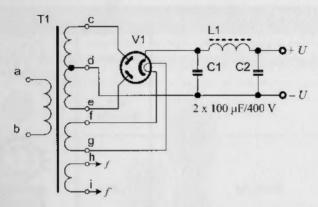
Vývoj tvarů elektronek

- a) původní tvar podobný žárovce (kolem roku 1925);
- b) pozdější tvary (kolem roku 1930);
- c) miniaturni elektronky (kolem roku 1950)

Zajímavým vývojem prošel i způsob připojení jednotlivých elektrod z baňky. První elektronky měly vyvedeny anodu a mřížku drátkem přímo ze skleněné baňky. Brzy se ale začaly vyrábět elektronky s různými druhy kolíkových (nožičkových) patic (viz např. obr. 2.6a nebo 2.6b). Elektronka se potom zasouvala do objímky připevněné na šasi zařízení, což umožňovalo snadnější výměnu.

V současné době se výrobou elektronek zabývá řada firem ve světě. Za zmínku stojí, že v České republice se elektronky vyrábějí ve firmě TESLA Vršovice, s. r. o. (původní název Radioslavia). Na firemních stránkách [W24] Ize zjistit, že v sortimentu této firmy je kromě vysílacích elektronek rovněž elektronka RE 40 AK, která je průmyslovým ekvivalentem elektronky KT88, resp. 6550 používané v koncových nízkofrekvenčních zesilovačích. Z nejbližšího okolí je největším výrobcem elektronek slovenská firma JJ electronic v Čadci, která v tom nejlepším slova smyslu navázala na dobré tradice výroby elektronek v Československu. Na firemních stránkách [W5] Ize nalézt podrobné informace a katalogové údaje o výrobcích (elektronky, kondenzátory a elektronkové zesilovače). V tabulce 2 je uveden přehled některých známějších výrobců elektronek a jejich firemní loga.

Tabulka 2 Přehled některých známějších výrobců elektronek


Firma	Země	Logo
JJ electronic (někdy bývá označováno jako TESLA)	Slovensko	(J.)
El Niš	býv. Jugoslávíe	Ei
Svetlana	Rusko	ESTATE OF THE STATE OF THE STAT
Sovtek	Rusko	SOUTEK
Electro-Harmonix	Rusko	
Western Electric	USA	Wastern Electric
SINO	Čína	

3

ZÁSADY PRO KONSTRUKCI ZAŘÍZENÍ S ELEKTRONKAMI

3.1 DIODA

Nejjednodušší elektronkou je **dioda**. Její funkcí je usměrnění střídavého proudu. Toho lze využít jak pro usměrnění proudu v obvodech vysoké frekvence, tak pro usměrnění napájecího napětí. Velmi často se používají dvojité diody, tzv. duodiody. Na *obr. 3.1* je uvedeno typické zapojení dvojité diody ve funkci usměrňovače střídavého napětí z transformátoru ve zdroji anodového napětí.

Obr. 3.1 Typické zapojení dvojité diody jako usměrňovače střidavého napětí

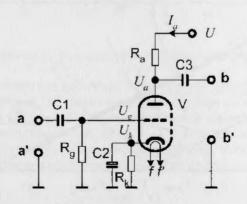
Na vývody a a b primárního vinutí transformátoru T1 je přivedeno střídavé síťové napětí 230 V. Anody dvojité diody V1 jsou spojeny s krajními vývody prvního sekundárního vinutí c a e. Napětí mezi krajními vývody a středem d bývá 200 až 500 V. Na katodě elektronky V1 je potom již usměrněné kladné napětí, které se potom filtruje Π -článkem složeným z kondenzátorů C1, C2 a tlumivky L1. Zápomý pól se odebírá ze svorky d (střed vinutí c - d - e). Někdy se tlumivka nahrazuje odporem, který musí být dostatečně dimenzován na odebíraný proud.

Žhavicí vlákno usměrňovací elektronky se obvykle napájí ze zvláštního vinutí (na obr. 3.1 jde o vinutí f-g) odlišného od vinutí pro žhavení ostatních elektronek v zařízení (vinutí h-i). Důvodem je skutečnost, že na katodě usměrňovací diody je vysoké kladné napětí, často bývá i žhavicí vlákno spojené s katodou (např. GZ34), takže není možno tento potenciál spojovat s žhavicími vlákny ostatních elektronek.

Výhodou uvedeného způsobu usměrnění pomocí nepřímo žhavené vakuové elektronky je postupné nabíhání vysokého napětí pro anody elektronek s postupným

nažhavováním elektronek, takže nedochází k neúměrnému přetěžování filtračních kondenzátorů při náběhu anodového proudu. Polovodičový usměrňovač vytvoří stejnosměrné napětí na filtračních kondenzátorech okamžitě po zapnutí, kdežto odběr do zátěže začne až po nažhavení elektronek.

3.2 ZÁKLADNÍ ZAPOJENÍ ZESILOVAČE S ELEKTRONKOU


Na *obr.* 3.2 je uvedeno typické základní zapojení elektronkového zesilovače. Jedná se o zapojení triody (zde je použíta jedna **trioda** z dvojité triody, třeba typu ECC83) v zapojení se společnou katodou, tzn. katoda je společnou elektrodou jak pro vstupní, tak pro výstupní obvod. Hodnoty kondenzátorů C1 až C3 se stanoví s ohledem na kmitočet přenášených signálů. Je-li dána velikost napájecího napětí U, naším úkolem nyní bude navrhnout hodnoty odporů $R_{\rm a}$, $R_{\rm k}$ (resp. $R_{\rm g}$) tak, aby zesilovač pracoval pokud možno v lineární oblasti charakteristiky elektronky (tedy s malým zkreslením).

Z katalogových údajů o elektronce (v našem případě ECC83) vyplývají hodnoty typického pracovního bodu: napětí na anodě U_a = 250 V, napětí na mřížce U_g = -2 V, anodový proud I_a = 1,2 mA, strmost S = 1,6 mA/V a zesílení μ = 100.

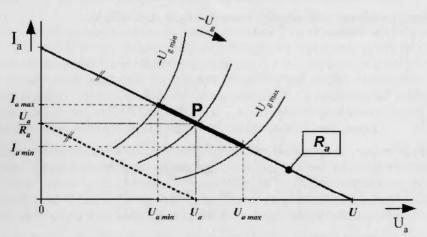
Lze předpokládat, že v klidovém pracovním bodu elektronky pracující jako lineární zesilovač bude optimální, aby na anodě elektronky bylo napětí rovno polovičnímu napájecímu napětí. To znamená, že i hodnota zatěžovacího odporu $R_{\rm a}$ v anodě musí být rovna hodnotě anodového odporu v pracovním bodě $R_{\rm p}$ – viz vztah (2.7), tzn.

$$R_{\rm a} = R_{\rm P} = \frac{U_{\rm a}}{I_{\rm a}} = \frac{250}{0,0012} = 208\,333\,\Omega,$$
 (3.1)

prakticky můžeme zvolit nejbližší hodnotu v řadě, např. 220 kΩ.

Obr. 3.2 Základní zapojení elektronky jako zesilovače

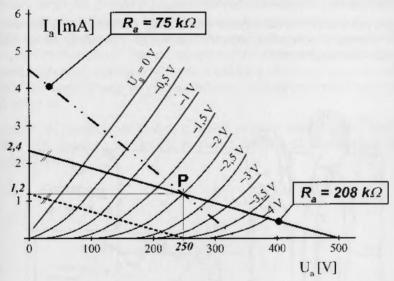
Typ odporu R_a musíme zvolit s ohledem na vyzářené teplo, tedy na ztrátový výkon. Velikost maximální hodnoty ztrátového výkonu na odporu R_a vypočteme ze vztahu:


$$P_{Ra} = \frac{U_a^2}{R_a} = \frac{250^2}{220\,000} = 0.284 \,\text{W}.$$
 (3.2)

Zvolíme odporové tělísko na zatížení 0,5 W. Pro elektronky s větším proudem se může jednat o odpory na zatížení v řádu wattů.

Na obr. 3.3a je do anodové charakteristiky elektronky znázorněna konstrukce **zatěžovací přímky** (angl. $load\ line$). Nechť klídový pracovní bod P je určen souřadnicemi $[U_a;I_a]$. V tomto bodě bude podle vztahu (3.1) hodnota zatěžovacího odporu R_a v anodě rovna hodnotě anodového odporu v pracovním bodě R_p . Nejprve sestrojíme pomocnou přímku jako spojnici bodů $[U_a;0]$ mA] a [0] V; $I_a]$, kde U_a , resp. I_a jsou hodnoty typického pracovního bodu P. Zatěžovací přímka v pracovním bodě P je potom rovnoběžka s touto pomocnou přímkou, která prochází pracovním bodem P. Průsečík zatěžovací přímky s osou napětí U_a vyznačuje napájecí napětí U. Na této zatěžovací přímce se nacházejí odpovídající provozní hodnoty U_a a I_a v daném zapojení v závislosti na změně U_g . Pokud zajistíme, aby rozkmit napětí na mřížce U_g byl jen v intervalu $< U_{g\ min}$; $U_{g\ max}>$, potom se pro dané zapojení zesilovače využívá jen část zatěžovací přímky (na obrázku vyznačena silněji v okolí pracovního bodu P).

Poznámka:


Charakteristiky elektronek jsou v katalogu uváděny pro napětí U_a měřené mezi anodou a katodou, takže pro připady elektronek s větším předpětím mřížky vytvářeným katodovým odporem musime mít toto na paměti a o hodnotu katodového napětí zvýšit vypočtenou nebo zjištěnou hodnotu U.

Obr. 3.3a Zatěžovací přímka v anodové charakteristice elektronky – obecný připad

Na *obr.* 3.3b je zakreslena zatěžovací přímka do anodové charakteristiky elektronky ECC83. Podle katałogových údajů sestrojíme pomocnou přímku jako spojníci bodů [250 V; 0 mA] a [0 V; 1,2 mA], což podle vztahu (3.1) odpovídá hodnotě R_a = 208 333 Ω . Nyní sestrojíme zatěžovací přímku jako rovnoběžku pomocné přímky procházející pracovním bodem P. Průsečík zatěžovací přímky s osou napěti U_a vyznačuje potřebné napájecí napětí U = 500 V, průsečík přímky s osou proudu I_a vyznačuje maximální proud I_a = U/R_a = 2,4 mA.

Klidové předpětí mřížky (angl. *grid bias*) může být nastaveno pevně z jiného napájecího zdroje (angl. *fixed bias*), nebo úbytkem napětí na katodovém odporu (angl. *cathode bias*). V prvním případě přivádíme na mřížku elektronky záporné předpětí ze zvláštního zdroje (baterie, další zdroj záporného napětí apod.). Ve druhém případě zajistíme katodovým odporem vhodné velikosti (viz dále), aby napětí

Obr. 3.3b Zatěžovací přímka v anodové charakteristice elektronky – elektronka ECC83

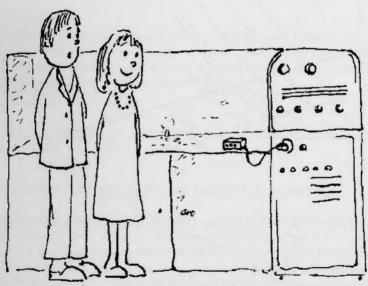
na katodě bylo kladnější než na mřížce. Druhý případ je častější pro svoji jednoduchost řešení. V případě, že napětí na mřížce $U_{\rm g}$ bude proti katodě zápornější (v našem případě je $U_{\rm g}=-2$ V), mřížkový proud je zanedbatelný ($I_{\rm g}=0$). Pro dosažení potřebného předpětí mřížky $U_{\rm g}=-2$ V musí být tedy na katodě napěti rovno +2 V (katoda má proti mřížce kladnější potenciál). Hodnotu katodového odporu $R_{\rm k}$ pak vypočteme podle Ohmova zákona ze vztahu:

$$R_{\mathbf{k}} = \frac{U_{\mathbf{g}}}{I_{\mathbf{a}}} = \frac{2}{0,0012} = 1666,7 \,\Omega,$$
 (3.3)

zvolíme hodnotu 1,5 kΩ.

Ztrátový výkon na katodovém odporu Rk bude:

$$P_{Rk} = \frac{U_g^2}{R_k} = 0,00267 \,\text{W},$$
 (3.4)


takže vyhoví miniaturní provedení rezistoru.

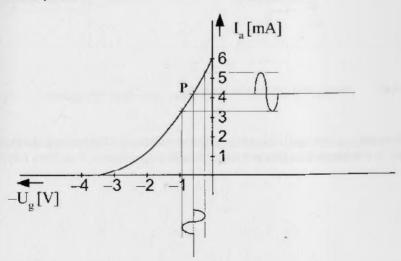
Nyní můžeme spočítat jakou změnu anodového proudu ΔI_a (v mA) způsobí např. změna napětí na mřížce ΔU_a = 100 mV, je-li strmost elektronky S = 1,6 mA/V:

$$\Delta I_a = S \cdot \Delta U_q = 1.6 \cdot 0.1 = 0.16 \text{ mA},$$
 (3.5)

což na odporu $R_{\rm a}$ = 220 k Ω způsobí změnu napětí $\Delta U_{\rm a}$ = 0,16 . 10^{-3} . 220 . 10^3 = 35,2 V. Znamená to, že v uvedeném zapojení se zvolenou elektronkou – při použití vztahu (2.8) – lze dosáhnout zesilení $A_{\rm H}$ = 78.

Zbývá navrhnout hodnotu odporu v mřížce $R_{\rm g}$. Hodnota tohoto odporu určuje vstupní impedanci zvoleného zapojení, obvykle se volí v řádu stovek kiloohmů nebo jednotek megaohmů.

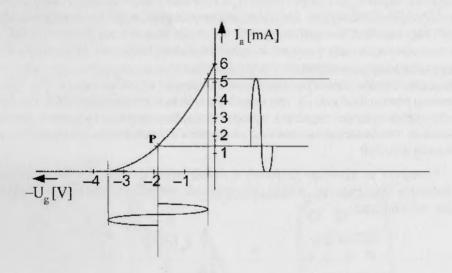
UHLÍ JE DRAHE, PLYN TAKY, BUDEME TOPIT ZESILOVAČEM ...


3.3 TŘÍDY ZESILOVAČŮ

Hodnotou zvoleného klidového předpětí na mřížce se zesilovač zařadí do jedné z třid zesilovačů: A, AB nebo B. Vysvětlíme si nyní stručně principy jednotlivých třid zesilovačů. Na pomoc si vezmeme převodní charakteristiku elektronky (např. z obr. 2.4), tedy funkční závislost $I_a = f(U_a)$ pro konkrétní hodnotu U_a .

3.3.1 Třída A

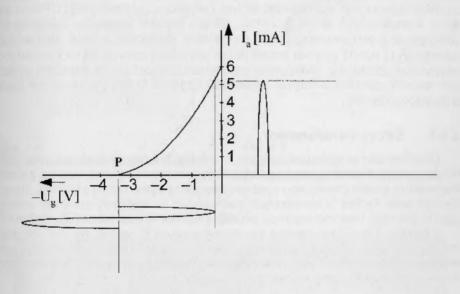
Zvolíme-li klidový pracovní bod P (tedy mřížkové předpětí) tak, aby při rozkmitu vstupního napětí $U_{\rm g}$ se výstupní napětí $U_{\rm a}$ pohybovalo v celém rozsahu v lineární části převodní charakteristiky (obr. 3.4a), bude průběh výstupního napětí bez patrného zkreslení. Této vlastnosti se využívá zejména pro nízkofrekvenční zesilovače, u níchž je požadováno velmi malé zkreslení. Je patrné, že kladnou i zápornou půlvlnu vstupního signálu zpracuje jedna elektronka. Nevýhodou tohoto řešení je skutečnost, že v klidovém stavu (bez signálu) koncovým stupněm protéká proud (odpovídající nastavenému klidovému pracovnímu bodu P). Tato skutečnost snižuje účinnost zesilovače, což může být při větších výkonech nepříznivé. Výhodou je dosažení velmi dobré linearity a nízkého zkrestení. Této vlastnosti se dnes využívá zejména v oblasti konstrukce kvalitních zesilovačů třídy hi-fi.


Třídou A1 se označuje zesilovač, u něhož mřižkou neteče proud (mřížkové předpětí je vždy záporné), a třídou A2 zesilovač, u něhož při části periody signálu teče mřížkou proud.

Obr. 3.4a Principy třid zesilovačů – třida A

3.3.2 Třída AB

Snížíme-li hodnotu mřížkového předpětí, může se stát, že při rozkmitu vstupního napětí $U_{\rm g}$ se výstupní napětí $U_{\rm a}$ dostane do nelineární části "hokejkovité" převodní křivky (obr. 3.4b), takže jedna půlvlna výstupního napětí bude již velmi zkreslená. V tomto případě bude třeba připojit druhý prvek – elektronku – do tzv. protitaktního zapojení (angl. push-pull), kde každý prvek zesiluje jen jednu půlvlnu. Nevýhodou tohoto řešení je vyšší úroveň zkreslení. Výhodou je dosažení vyšší účinnosti.


Obr. 3.4b Principy tříd zesilovačů – třída AB

Uvedený digram platí obecně pro jednu elektronku, tj. jednu půlvlnu. Druhá půlvlna je vzhledem ke zkreslení nepoužitelná.

3.3.3 Třída B

Při nastavení klidového pracovního bodu P, v němž je klidový anodový proud nulový, zesilovač zesilí jen jednu půlvlnu vstupního napětí $U_{\rm g}$ (obr. 3.4c). Nevýhodou tohoto řešení je vyšší úroveň zkreslení, zejména pak tzv. přechodového zkreslení při změně polarity, kdy si koncové prvky kolem nulového vstupního napětí "předávají" svoji funkci. Výhodou je dosažení vyšší účinnosti i větších výkonů.

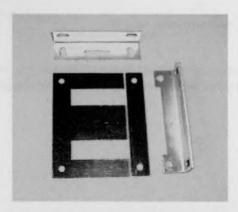
Kromě výše popsaných tříd zesilovačů se můžeme setkat i s dalšími třídami (C, D a příp. i jinými), které se však v oblasti nízkofrekvenčních zesilovačů s elektronkami používají zřídka.

Obr. 3.4c Principy tříd zesilovačů – třída B

Uvedený digram platí obecně pro jednu elektronku, tj. jednu půlvinu. Druhá elektronka pracuje s opačnou polaritou signálu, tj. s druhou půlvlnou.

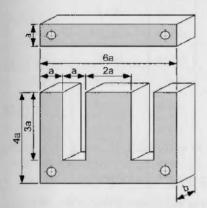
3.4 NÁVRH TRANSFORMÁTORU

Prakticky pro každý elektronkový zesilovač budeme potřebovat nejméně dva transformátory:

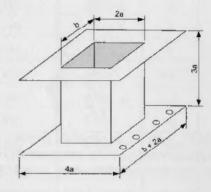

- · síťový transformátor,
- · výstupni transformátor.

Profesionální výrobou transformátorů, pro naše účely především kusovou výrobou, se zabývá několik menších firem (např. FJL, s. r. o. [W24], TBP Blatná [W3] a další). V amatérských podmínkách se však v dnešní době návrhem a výrobou transformátoru zabývá již málo odvážlivců (většinou si jej raději koupí). Přesto se touto, v dnešní době téměř "alchymií", někteří fandové prokoušou a někteří se dokonce se svými poznatky podělí s ostatními. Příkladem je např. internetová stránka [W1], na níž se autor kromě jiných konstrukcí zabývá též problematikou návrhu transformátorů. Tento pramen posloužil (samozřejmě s laskavým svolením autora) společně s dalšími uvedenými v závěru knížky při sestavení části o transformátorech.

3.4.1 Siťový transformátor


Transformátor je elektrické zařízení, které slouží k přeměně elektrického střidavého napětí. Skládá se ze dvou (nebo více) cívek navinutých na kostře a z jádra složeného z plechů (plechy jsou vyrobeny obvykle ze slitiny železa a křemíku, označované např. FeSi4). V amatérských podmínkách se nejčastěji používají plechy typu El pro svoji relativně snadnou montáž, příp. i demontáž (*obr. 3.5*).

V tabulce 3 je uveden přehled transformátorových El plechů. Na *obr. 3.6* jsou naznačeny normalizované rozměry transformátorových El plechů. Normalizovaná tloušťka El plechů je 0,35 mm nebo 0,5 mm. Normalizované rozměry kostřiček pro El plechy jsou naznačeny na *obr. 3.7*.



Obr. 3.5 Transformátorové plechy typu El, včetně svorníků (vpravo) a držáku (nahoře)

Cívky transformátorů se navíjejí obvykle měděným vodičem s lakovou (smaltovanou) izolací. Tyto vodiče se obvykle označují CuL. V tabulce 4 je uveden přehled lakovaných vodičů a jejich vlastností (tabulka uvádí vodiče s průměrem 0,1 mm až 2,0 mm, tedy nejčastěji používané pro malé transformátory). Vstupní vinutí cívky budeme nazývat primárem, výstupní vinutí cívky budeme nazývat sekundárem.

Obr. 3.6 Rozměry transformátorových El plechů

Obr. 3.7 Rozměry kostřiček pro transformátory složené z El plechů

Tabulka 3 Typy transformátorových El plechů

Typ El plechu	Velikost 2a [mm]	Průřez jádra S _{Fe} = 4a ² [cm ²]	Přenášený výkon P pro B = 0,25 T [W]	Přenášený výkon P pro B = 1 T [W]	Plocha okénka S _V = 3a ² [mm ²]	Plocha vinutí Sv [mm²]
EI10	10	1,0	0,25	1,0	75	50
EI12	12	1,44	0,5	2,07	108	78
EI16	16	2,56	1,6	6,55	192	152
El20	20	4,0	4	16,0	300	250
El25	25	6,25	9,8	39,1	469	407
El32	32	10,24	26	105	768	688
El40	40	16,0	64	360	1200	1100
EI50	50	25,0	156	625	1875	1750
El64	64	40.96	419	1678	3072	2912

Sekundárních vinutí může mít transformátor i několik.

Pro transformátor platí tyto základní vztahy:

$$\frac{U_{\rm p}}{U_{\rm s}} = \frac{N_{\rm p}}{N_{\rm s}} \tag{3.6}$$

$$\frac{I_{\rm p}}{I_{\rm s}} = \frac{N_{\rm s}}{N_{\rm p}} \tag{3.7}$$

$$p = \frac{U_{\rm p}}{U_{\rm s}} = \frac{N_{\rm p}}{N_{\rm s}} \tag{3.8}$$

$$p = \sqrt{\frac{Z_p}{Z_s}},\tag{3.9}$$

kde $U_{\rm p}$, resp. $U_{\rm s}$ je napětí na primáru, resp. na sekundáru, $N_{\rm p}$, resp. $N_{\rm s}$ je počet závitů primárního, resp. sekundárního vinutí. $Z_{\rm p}$, resp. $Z_{\rm s}$ je impedance primárního, resp. sekundárního vinutí, činitel p je tzv. převod transformátoru.

Při návrhu síťového transformátoru nejprve spočítáme předpokládaný celkový odebíraný výkon jako součet výkonů (součin napětí ve voltech a proudu v ampérech) na všech sekundárech (obecně jich může být n):

$$P_{\text{vist}} = U_{\text{S1}} \cdot I_{\text{S1}} + U_{\text{S2}} \cdot I_{\text{S2}} + \dots + U_{\text{Sn}} \cdot I_{\text{Sn}}$$
 (3.10)

Účinnost transformátoru (označuje se η) bývá mezi 70 až 90 % (malé transformátory mají účinnost menší, kolem 70–80 %, větší transformátory mohou mit účinnost až 90 %). Znamená to, že vstupní výkon transformátoru $P_{\rm vst}$ musíme o tyto ztráty zvětšit:

$$P_{\text{vst}} = 100 \cdot \frac{P_{\text{výst}}}{n} \tag{3.11}$$

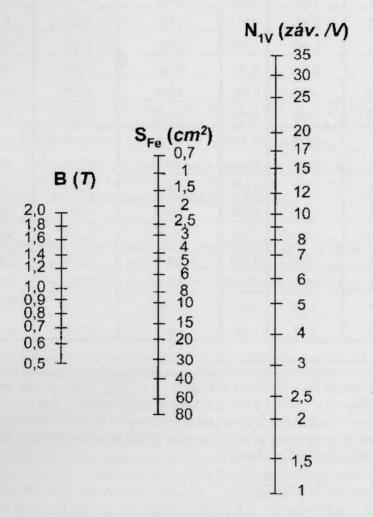
Průřez vhodného jádra transformátoru $S_{\rm Fe}$ (tzv. průřez středního sloupku transformátoru) vypočteme podle empirického vzorce:

$$S_{Fe} \approx \sqrt{\frac{P_{vst}}{B}}$$
 (3.12)

kde průřez jádra (středního sloupku) transformátoru $S_{\rm Fe}$ vychází v cm², vstupní výkon transformátoru $P_{\rm vst}$ zadáváme ve wattech [W] a **B** je hodnota sycení jádra (magnetická indukce) v jednotkách tesla [T]. Převod mezi starší jednotkou gauss [G] užívanou ve starší literatuře a novější T je 1 G = 10^{-4} T. Pro transformátor s El plechy se běžně může volit sycení v rozsahu 0,8–1,3 T, u transformátoru s lepeným C jádrem nebo toroidním jádrem až 2 T.

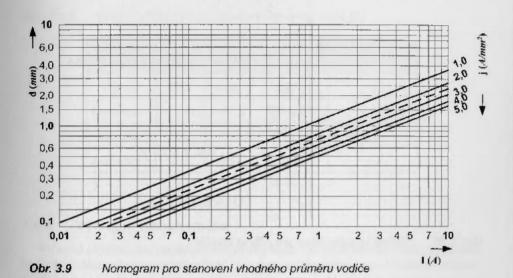
Tabulka 4 Tabulka měděných vodičů

Průměr Cu vodiče d (mm)	Průměr CuL D (mm)	Průřez vodiče S _{cu} (mm²)	Max. proud při j = 2,55 A/mm ² I _M (A)	Odpor vodiče na 1 m délky R_1 (Ω/m)	Ztrátový výkon P _z (mW/m)
0,1	0,121	800,0	0,020	2,225	1
0,2	0,23	0,031	0,079	0,574	4
0,3	0,338	0,071	0,181	0,251	8
0,4	0,445	0,126	0,321	0,141	15
0,5	0,552	0,196	0,500	0,091	23
0,56	0,62	0,246	0,627	0,072	28
0,63	0,96	0,126	0,796	0,057	36
0,71	0,775	0,396	1,010	0,045	46
0,8	0,875	0,502	1,280	0,036	59
0,9	0,975	0,636	1,622	0,028	74
1,0	1,075	0,785	2,002	0,023	92
1,25	1,345	1,227	3,129	0,015	147
1,4	1,495	1,539	3,925	0,012	185
1,6	1,695	2,010	5,126	0,009	236
1,8	1,86	2,543	6,485	0,007	294
2,0	2,10	3,142	7,850	0,0055	352


Plechy se vyrábějí v určitých normalizovaných rozměrech (víz např. $tabulku\ 3$), ideální je vybrat šířku středního sloupku 2. a = $\sqrt{S_{Fe}}$, potom je tvar středního sloupku čtvercový, u něhož b = 2. a a délka závitu je minimální (vinutí má i malou hodnotu vnitřního odporu). Zvolíme proto nejblíže vyšší normalizovaný rozměr plechů (doporučuje se zvětšit průřez jádra až o $20\ \%$). Nyní stanovíme počet závitů na $1\ V$ podle empirického vztahu:

$$N_{1V} \approx \frac{45}{B \cdot S_{Fe}} \tag{3.13}$$

kde $N_{\rm 1V}$ je počet závitů na 1 volt, B je sycení jádra (magnetická indukce) v T a $S_{\rm Fe}$ zvolený průřez jádra transformátoru v cm².


Pro rychlé stanovení počtu závitů na 1 V slouží nomogram na obr. 3.8. Pravítkem spojíme zvolenou hodnotu sycení B na levé stupnici se zvolenou hodnotou průřezu středního sloupku $S_{\rm Fe}$ na prostřední stupnici a na pravé stupnici nám vyjde hledaný počet závitů na 1 volt.

Ze zjištěné hodnoty $N_{\rm 1V}$ nyní stanovíme počty závitů pro jednotlivá vinutí. Hodnotu počtu závitů pro sekundární vinutí zvětšíme obvykle o 3–6 % (ztráty v jádře, úbytky ve vinuti apod.).

Obr. 3.8 Nomogram pro stanovení počtu závitů na 1 V

Nyní zbývá zvolit průřezy vodičů, kterými budeme vinutí jednotlivých cívek navíjet na kostřičku transformátoru. K tomu je třeba zvolit proudovou hustotu j, která se udává v [A/mm²]. Pro běžné síťové transformátory se obvykle volí proudová hustota j = 2,5 A/mm² pro vnitřní vinutí (hůře chlazená), příp. j = 3,5 A/mm² pro vnější vinutí (lépe chlazená). Vhodný měděný vodič pak můžeme stanovit pomocí nomogramu z *obr.* 3.9. Hledanou hodnotu průměru vodiče d v [mm], odpovídající požadovanému proudu I v [A], nalezneme na příslušné přímce, která udává zvolenou proudovou hustotu j v [A/mm²].

Nyní máme dostatek informací k praktickému úkonu. Většinou se jako první navíjí primární vinutí, tj. vinutí na straně síťového napětí (jmenovitě 230 V, 50 Hz). Většinou není třeba vrstvy prokládat izolačním papírem. Následuje 0,2–0,4 mm izolace (4–8 ovinů papíru tłoušťky 0,05 mm). Pásku izolačního papíru ustřihneme trochu širší, než je vnitřní rozměr kostřičky, a po celé délce nastřihneme oba okraje do hloubky asi 2–3 mm. Tímto způsobem zamezíme propadnutí závitu sekundárního vinutí do primáru na krajích vinutí. Stejného efektu lze dosáhnout, nezačneme-li s vinutím hned od samého kraje. Mezi jednotlivá vinutí (mezi primár a sekundár a mezi jednotlivé sekundáry) vložíme další vrstvu izolačního papiru. Jako vnější navíjíme sekundární vinutí. Na začátky a konce vinutí nasadíme izolační trubičky vhodného průměru (bužírku) a protáhneme otvorem do čela kostřičky, kde je vždy dobře označíme, příp. ponecháme dostatečně dlouhé, abychom je po sestavení plechů mohli bez problémů připájet ke svorkám na čele kostřičky. Na závěr vinutí pevně stáhneme izolační páskou. Nyní můžeme do kostřičky naskládat plechy, na závěr plechy stáhnout svorníky a připevnit držák.

Příklad návrhu síťového transformátoru:

Jako příklad provedeme návrh síťového transformátoru pro zdroj z obr. 3.1. Výchozí zadání hodnot pro návrh (obr. 3.10) je:

- a) primár: $U_p = 230 \text{ V}$; 50 Hz,
- b) sekundár 1: $U_{S1} = 2 \times 300 \text{ V}$; $I_{S1} = 2 \times 100 \text{ mA}$,
- c) sekundár 2: U_{S2} = 6,3 V; I_{S2} = 1 A,
- d) sekundár 3: U_{S3} = 6,3 V; I_{S3} = 3,5 A.

$$U_{p} = 230V$$

$$b = 0$$

$$U_{s1} = 2 \times 300 \text{ V} / 2 \times 100 \text{ mA}$$

$$U_{p} = 230V$$

$$U_{s2} = 6,3 \text{ V} / 1 \text{ A}$$

$$U_{s3} = 6,3 \text{ V} / 3,5 \text{ A}$$

Obr. 3.10 Nákres transformátoru pro příklad výpočtu

Ze vztahu (3.10) vypočteme P_{vyst} = 88,35 W. Předpokládejme účinnost η = 80 %, potom podle (3.11) bude P_{vst} = 110 W. Zvolíme-li sycení jádra B = 1 T, potom ze vztahu (3.12) vypočteme průřez středního sloupku S_{Fe} = $\sqrt{110}$ = 10,5 cm². Odtud bychom spočítali rozměr středního sloupku 2 . a = $\sqrt{10,5}$ = 3,2 cm = 32 mm, přidáme 20 %, takže se dostaneme na hodnotu 38,4 mm, podle *tabulky 3* zvolíme tedy plechy El40. Pro tento rozměr je průřez středního sloupku S_{Fe} = 16 cm². Při zvoleném sycení 1 T potom ze vzorce (3.13) nebo z nomogramu na *obr. 3.8* zjistíme počet závitů na 1 V. Pro primární vinutí tedy bude N_{1V} = 2,81 závitů na 1 V, pro sekundár bude tato hodnota N_{1V} = 2,81 . 1,05 = 2,95 závitů na 1 V.

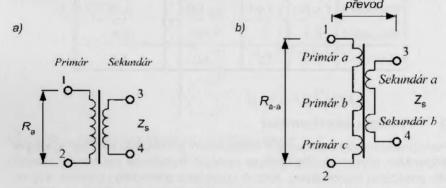
Z dosud vypočtených hodnot a při zvolené proudové hustotě $j = 2,5 \text{ A/mm}^2$ z nomogramu na obr. 3.9 můžeme sestavit tabulku pro navíjecí předpis (tabulka 5).

Poznámka:

Dvojité vinutí sekundáru 1 můžeme v případě síťového transformátoru vinout každé zvlášť stejným počtem závitů (počet závitů na volt zůstává zachován). Připadná nelinearita obou vinutí nevadí. Pro náročnější aplikace (např. u výstupních transformátorů) je však třeba zachovat i shodné velikosti odporů, indukčností a kapacit obou polovin vinutí, proto se v těchto připadech obě vinutí navíjejí současně (tzv. BIFILARNĚ). Střed v obou případech vytvořime jako spoj konce prvního vinutí se začátkem druhého vinutí.

Tabulka 5 Navijecí předpis pro navrhovaný síťový transformátor

Vinutí	Napětí [V]	Proud [A]	Počet závitů	Průměr vodiče [mm]
Primár	230	0,48	647	0,6
Sekundár 1	2 × 300	2 × 0,1	2 × 885	0,25
Sekundár 2	6,3	1	19	8,0
Sekundár 3	6,3	3,5	19	1,4


3.4.2 Výstupní transformátor

Pro nízkofrekvenční zesilovače s elektronkami je důležitou součástí **výstupní transformátor**, kterým se přizpůsobuje výstupní impedance anodového obvodu k nízké impedanci reproduktoru. Kromě správného převodního poměru jsou na výstupní transformátor kladeny především požadavky na frekvenční přenosovou charakteristiku. Z těchto skutečností vyplývá, že amatérský návrh a výroba výstupního transformátoru není snadnou záležitostí. Zde uvedeme alespoň náznak empirického návrhu pro počáteční pokusy.

Z hlediska přenosu relativně širokého pásma akustických kmitočtů představuje výstupní transformátor komplexní obvod zahrnující jak základní, tak parazitni vlastnosti primárního a sekundámího vinutí. Hlavními určujícími parametry jsou indukčnost primárního vinutí (ovlivňuje dolní mezní kmitočet) a kapacita vinutí (má vliv na horní mezní kmitočet a na rezonanční kmitočty transformátoru, které musí ležet mimo slyšitelné pásmo). Z těchto důvodů se vinutí primáru i sekundáru výstupního transformátoru obvykle rozloží do více vrstev, které se vzájemně propojí (viz obr. 3.11).

Magnetickou indukci (sycení) B pro výstupni transformátor je vhodné navrhnout na hodnotu 0,1–0,4 T. Pokud bychom znali přesně tvar magnetizační křivky (hysterezní smyčky) použítého materiálu jádra, můžeme určit sycení jádra přesně tak, abychom se pohybovali v lineární části této charakteristiky. To je aktuální

u výstupního transformátoru pro koncový zesilovač. Běžně se volí hodnota sycení B = 0,25 T. Nejdůležitějším požadavkem na výstupní transformátor je převod impedance, proto se mu často říká převodník. Zatěžovací impedance elektronky je v řádu $k\Omega$, impedance běžně používaných reproduktorů je od 2 do 16 Ω . Zatěžovací impedanci elektronky, která bude rovna impedanci primárního vinutí Z_n, vypočteme stejně jako hodnotu zatěžovacího odporu - viz výraz (3.1). Po dosazení potřebných hodnot do vzorce (3.10) dostaneme převodní poměr výstupního transformátoru. Dále musíme určit napětí na sekundární nebo na primární straně transformátoru. Budeme při tom vycházet z výkonu zesilovače, který by neměl překročit maximální výkon elektronky v daném zapojení Po. Tento výkon (zmenšený o účinnost transformátoru) se objeví i na sekundární straně transformátoru. Průřez vhodného jádra transformátoru S_{Fe} (tzv. průřez středního sloupku transformátoru) vypočteme dosazením do vzorce (3.12), kde za P_{vst} dosadíme výkon na primáru Po. Nyní již můžeme ze vzorce (3.13), resp. nomogramu na obr. 3.8, vypočítat počet závitů na volt a následně z hodnot napětí na primáru a na sekundáru počet závitů primárního a sekundárního vinuti.

Obr. 3.11 Příklad provedení výstupního transformátoru:
a) schématická značka výstupního transformátoru;
b) příklad skutečného provedení výstupního transformátoru

Příklad návrhu výstupního transformátoru:

Jako příklad uvedeme návrh výstupního transformátoru pro jednočinný koncový stupeň s elektronkou EL84. Hodnoty pro zesilovač ve třídě A (např. z katalogu) jsou: I_a = 49,5 mA, R_a = 5,2 k Ω a P_O = 5,7 W. Impedance reproduktoru nechť je 4 Ω .

Ze vztahu (3.12) pro $P_{\rm vst}=P_{\rm O}=5.7$ W a pro B=0.25 T vypočteme $S_{\rm Fe}=4.8$ cm². Z tabulky 3 zjistíme, že nejbližší vyšší rozměr El plechů je El25 s průřezem středního sloupku 6,25 cm². Pro tento rozměr plechů ze vztahu (3.13) vypočteme (resp. určíme z nomogramu na obr. 3.8) $N_{\rm 1V}=29$ závitů na 1 V pro primár a $N_{\rm 1V}=29$. 1,05 = 31 závitů na 1 V pro sekundár. Z hodnot impedancí $Z_{\rm p}=R_{\rm a}=5.2$ k Ω a $Z_{\rm s}=4$ Ω vypočteme ještě podle vztahu (3.10) převod transformá-

toru $p = \sqrt{(5200/4)} = 36$. Napětí na sekundáru $U_{\rm S} = \sqrt{(P_{\rm O} \cdot Z_{\rm S})} = 4.8$ V, odtud napětí na primáru $U_{\rm p} = p$. $U_{\rm s} = 172$ V. Nyní máme vlastně pohromadě všechny údaje pro dokončení výpočtu, které jsou v přehledu pro navijecí předpis uvedeny v *tabulce* 6 (zvolená proudová hustota j = 2.5 A/mm²).

Poznámka:

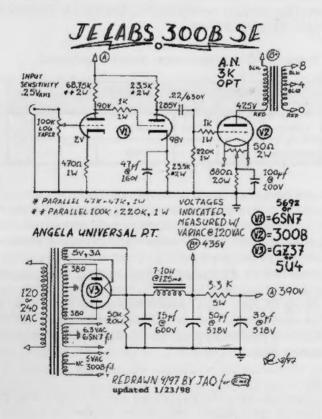
Vzhledem k požadavkům na parametry výstupního transformátoru bude třeba vinutí primáru i sekundáru rozložit do několika částí (viz obr. 3.11), takže samotné navíjení není jednoduchou činností a vyžaduje praxi. Je třeba sekce vinutí rozdělit na sudý počet vrstev, aby nám začátek a konec sekce vyšel na jednu stranu, potom se lépe propojoval. Jednotlivé vrstvy můžeme oddělovat jedním závitem izolačního papíru (byl vyzkoušen např. papír na pečení o síle 0,05 mm). Izolaci mezi primárem a sekundárem provedeme dva závity papíru a dva závity papírové čtvrtky. Je také vhodné umístit vývody sekundáru na druhou stranu kostřičky, než jsou vývody primáru. Zejména je důležité zabránit, aby se vývody mohly vzájemně dotýkat.

Tabulka 6 Navijeci předpis pro navrhovaný výstupní transformátor

Vinuti	Napětí [V]	Proud [A]	Počet závitů	Průměr vodiče [mm]
Primár	172	0,033	4988	0,2
Sekundár	4,8	1,2	149	0,8

Výše popsaný postup ize použít především při návrhu výstupních transformátorů pro jednočinné zesilovače nízkých výkonů. V případě dvojčinných zesilovačů (push-pull) je nutné mít na paměti, že primární vinutí bude mít dvě zcela symetrické poloviny, pokud jde o počet závitů i vrstev a jejich proložení. Většinou lze takové výstupní transformátory realizovat pomocí dvoukomorových kostřiček, ve kterých se poloviny primárního vinutí pravidelně střídají (prohazují). Pro amatérskou výrobu je však takový návrh poněkud složitější a vyžadoval by i podrobnější teoretický rozbor, který by byl již mimo hlavní poslání této knížky. Proto laskavému čtenáři doporučuji v takovém případě spojit se s některou renomovanou firmou, která má zkušenosti s návrhem a výrobou výstupních transformátorů. (Např. s některou uvedenou v úvodu této kapitoly).

Poznámka red.:


Pro jednočinný stupeň (ve třídě A) platí: pro přenos nízkých kmitočtů je důležitá indukčnost, která je dána jádrem, vzduchovou mezerou a počtem závitů. Jak z uvedené věty vyplývá, plechy je tedy nutno skládat se vzduchovou mezerou.

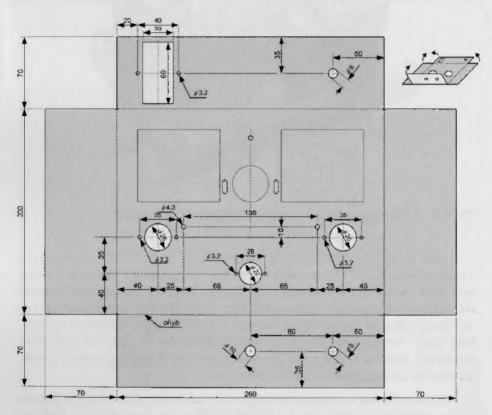
PŘÍKLADY KONSTRUKCE ELEKTRONKOVÝCH NF ZESILOVAČŮ

Hlavním důvodem k používání elektronek při konstrukci nizkofrekvenčních zesilovačů je snaha získat pokud možno dobré poslechové vlastnosti (většinou ze subjektivního hlediska). Dalším neopominutelným důvodem je originální a historizující vzhled zařízení. Pro řadu konstruktérů je klasické řešení zařízení i součástí jejich životního stylu nebo filozofie.

Příkladem z mnohých je houslista a konstruktér-amatér Joseph Esmilla, který ve své "laboratoři" J. E. Labs (adresa [W22]) navrhl a ve spoluprácí s přáteli vytvo-

Obr. 4.1 Schéma zesilovače J. E. LABS 300B SE

řil celé domácí studio sestavené z klasických prvků. Z jeho "dílny" pochází například konstrukce koncového stupně osazeného přimožhavenou koncovou triodou (DHT, z angl. *Directly Heated Triode*) typu 300B (*obr. 4.1*). Pohled na komerčně vyráběný zesilovač této koncepce (*obr. 4.2*) firmy Walton Audio z Irska dokládá základní filozofii tohoto způsobu řešení: sklo, vyleštěný kov, dokonalý zvuk. Skoro bychom řekli, že jde o konstrukcí a výrobek starý přinejmenším 50 let.

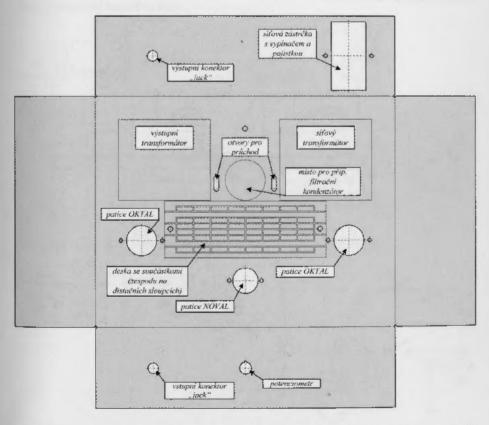

Obr. 4.2 Zesilovač s koncovou triodou 300B (firma Walton Audio)

V další části jsou uvedeny příklady nízkofrekvenčních zesilovačů s elektronkami a jejich stručný popis. Předpokládáme, že ten, kdo si nějaký zesilovač postaví, není úplný začátečník, a že kromě určité odvahy, zručnosti, potřebného vybavení své dílničky zná i zásady práce s elektrickým zařízením. Především je třeba dbát na zásady práce na zařízeních se síťovým napětím, které může být při neopatrnosti životu nebezpečné! Pokud sí nejste jisti, obraťte se raději na některého elektronika či radioamatéra, který vám jistě ochotně pomůže nebo alespoň poradí. Kontakt lze navázat i prostřednictvím internetu.

Pro počáteční experimenty s elektronkovými zesilovači bude vhodným mechanickým základem univerzální šasi, jehož výkres s rozměry je na *obr. 4.3a.* Můžeme jej vyrobit např. z ocelového plechu a po naohýbání podle náčrtu (případně po svaření v rozích) natřít základovou barvou a nastříkat třeba černým emailem.

Konstrukce šasí je navržena tak, abychom na něm mohli realizovat některá zde uvedená zapojení elektronkových zesilovačů (obr. 4.3b).

Na horní desce šasi jsou připraveny otvory pro jednu elektronkovou objímku typu noval a pro dvě objímky typu oktal, plocha pro umístění síťového a výstupního transformátoru (ty bude třeba upevnit podle použitého typu) včetně otvorů pro průchod připojovacích vodičů a připevňovací otvory pro desku se součástkami, která se přišroubuje na distanční sloupky zespodu (pro tento účel můžeme použít univerzální desku s veľkými pájecími ploškami, např. TA024 z nabídky GM Electronic, kterou přeřízneme podélně na rozměr 140 × 50 mm). Bude-li třeba, lze na ploše mezi transformátory vyvrtat otvor pro umístění elektrolytického kondenzátoru určeného pro filtrací anodového napětí. Ten se potom otvorem buď protáhne na desku

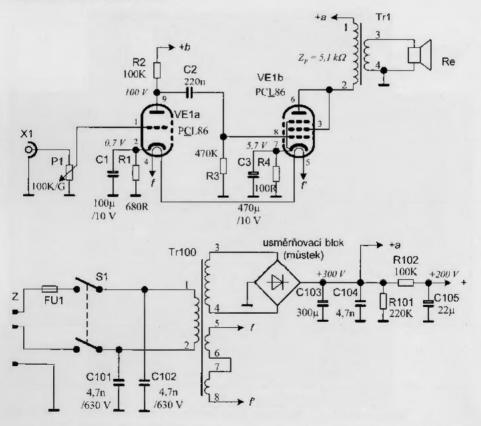


Obr. 4.3a Univerzální šasi pro elektronkové zesilovače – výkres s rozměry (naznačeno ohýbání)
Kompletní ohnuté šasi je možno objednat – bližší informace na konci knihy

uvnitř šasi, nebo se upevní objímkou přímo na plochu. Dříve se pro tento účel používaly elektrolytické kondenzátory s centrálním šroubem, ty však již nejsou ve výrobním programu žádné z dostupných firem.

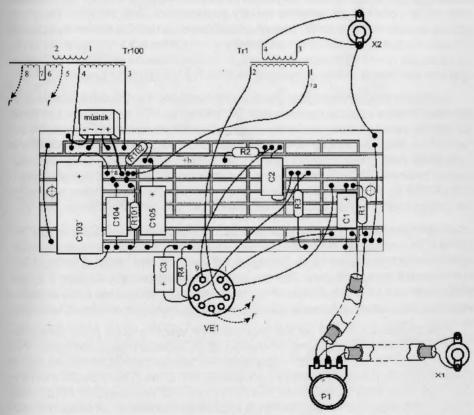
Na budoucím předním panelu jsou otvory pro vstupní konektor typu "jack" (průměr 6,3 mm) a pro potenciometr (regulace hlasitosti). Na zadním panelu je otvor pro umístění panelové síťové zástrčky se síťovým vypínačem a pojistkou (např. typ FEH52101 z nabídky GM Electronic obsahuje i síťový filtr) a výstupní konektor typu "jack".

Konstrukci lze samozřejmě pozměnit a doplnit podle zručnosti, zkušeností a vybavení dílny. Navržené řešení je sice jednoduché, ale pro počáteční konstrukce bude zcela jistě dostačující.


Obr. 4.3b Univerzální šasi pro elektronkové zesilovače – umistění součástek na šasí

4.1 ZESILOVAČE S JEDNOČINNÝM KONCOVÝM STUPNĚM

Zesilovače s jednočinným stupněm (angl. single-ended = SE), tedy s jednou koncovou elektronkou, patří k těm konstrukčně nejjednodušším. Nevýhodou je poměrně malý výkon, kterého lze dosáhnout. Většinou se tyto zesilovače používají jako jednoduché koncové stupně s malými nebo středními výkony, většinou pro domácí poslech, případně jako kytarové zesilovače.


4.1.1 Zesilovač s jedinou dvojitou elektronkou PCL86

Jako příklad velmi jednoduchého řešení zesilovače s dosažitelným výkonem okolo 2 W zde uvedeme zapojení zesilovače s dvojitou elektronkou PCL86 (obr. 4.4a). Tato elektronka obsahuje triodu a pentodu a je určena zejména pro nízkofrekvenční zesilovače.

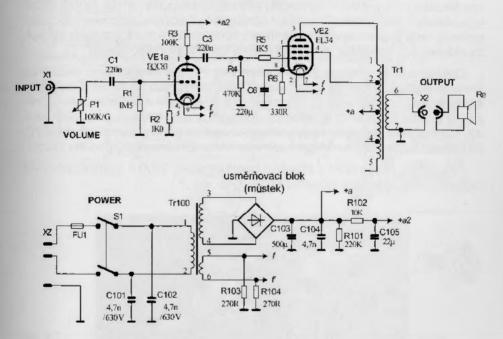
Obr. 4.4a Jednoduchý zesilovač s dvojitou elektronkou PCL86 – schéma zapojení

Trioda elektronky PCL86 (ve schématu označená VE1a) slouží jako předzesilovač a budič koncové pentody. Mřížka je spojena přímo s běžcem vstupního potenciometru P1, kterým se ovládá hlasitost zesilovače. Odporem R1 v katodě je nastaveno předpětí na mřížce. Tento odpor je blokován proti zemi elektrolytickým kondenzátorem C1. Zatěžovací odpor v anodě R2 postačí pro zatížení 0,25 W, protože jím protéká proud kolem 1 mA. Vazbu střídavého nízkofrekvenčního signálu na mřížku pentody zajišťuje kondenzátor C2. Mřížkové předpěti pentody se vytváří průchodem proudu katodovým odporem R4. Ten je blokován proti zemi elektrolytickým kondenzátorem C3. Pentoda je zapojena jako trioda (druhá mřížka je spojena s anodou a třetí mřížka s katodou – tento spoj je realizován již v baňce elektronky). Výstupní transformátor Tr1 je navržen tak, aby impedančně převáděl impedanci 5,1 k Ω na impedanci použitého reproduktoru Re (tj. obvykle 4 až 8 Ω). Při začátcích, kdy nám půjde spíše o vyzkoušení práce s elektronkou než o kvalitní přenos nízkofrekvenčních signálů, můžeme použít místo výstupního transformátoru např. zvonkový transformátor.

Obr. 4.4b Jednoduchý zesilovač s dvojitou elektronkou PCL86 – rozmistění součástek

Krátkou pozomost věnujme ještě zdrojové části. Zde použitý síťový transformátor Tr100 má na sekundárním vinuti 3–4 napěti 200 až 250 V při proudu alespoň 100 mA a na sekundárních vinutích 3–4 a 5–6 napětí 2 × 6,3 V při proudu alespoň 0,5 A. Blokovací kondenzátory C101 a C102 připojené na prímární vinutí síťového transformátoru Tr100, mají funkci vstupního filtru a vzhledem k tomu, že jsou připojeny přímo na síťové napětí, musí být určeny na napětí alespoň 630 V. Pokud použijeme panelovou síťovou zástrčku se síťovým vypínačem, pojistkou a síťovým filtrem (např. typ FEH52101), můžeme je vypustit. Anodové napětí se získává z prvního sekundárního vinutí usměrněním a následně filtrací elektrolytickým kondenzátorem C103. Tento kondenzátor musí být určen na použité stejnosměrné napětí, tj. min. na 350 až 400 V. Blokovací kondenzátor C104 a odpor R101 tvoří filtr a současně vybíjecí zátěž. Z tohoto místa je rovněž odebíráno napětí pro koncovou pentodu VE1b. Anodové napětí pro vstupní triodu je odebíráno za dalším filtrem, který tvoří odpor R102 a kondenzátor C105.

Elektronka PCL86 je určena pro sériové žhavení s proudem 300 mA, z katalogových údajů vyplývá, že jmenovíté žhavicí napětí je 14,5 V. Tato hodnota nám může v případě, že nemáme vhodný transformátor, činit problémy. Pro první pokusy se však můžeme smířit i s poněkud podžhavenou katodou elektronky a připojit žhavení na dvě vinutí síťového transformátoru s napětím 6,3 V zapojená do série, čili na napětí 12,6 V. Vhodnější by bylo použít měně dostupnou elektronku ECL86 se stejnými parametry, avšak se žhavicím napětím 6,3 V a žhavicím proudem 0,7 A.


Zesilovač můžeme postavit na univerzálním šasi z *obr. 4.3.* Osadíme síťový transformátor Tr100 a výstupní transformátor Tr1, elektronku VE1 typu PCL86 umístime do objímky noval a ostatní součástky můžeme umístit na univerzální desce přišroubované na distanční sloupky uvnitř šasi, např. podle *obr. 4.4b.* Na desku umístime i zdrojovou část, tj. usměrňovací blok VD100, filtrační kondenzátory C103 (požadovanou hodnotu 300 μF dosáhneme paralelním zapojením tří kondenzátorů 100 μF/350 V), C104, C105 a odpory R101 a R102. Dbáme zejména na použití správných hodnot kondenzátorů na vhodné napětí (v našem případě min. 350 V).

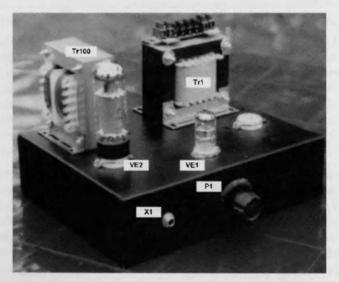
Spoje provedeme ohebným nebo pevným vodičem s izolací PVC o průřezu nejméně 0,35 mm². Spoje označené přerušovanou čarou označující rozvod žhavicího napětí elektronky, provedeme dvěma mírně zkroucenými vodiči s izolací PVC o průřezu 0,5 nebo 0,75 mm². Zemnicí spoje provedeme rovněž vodičem s izolací PVC o průřezu 0,75 mm². Signálové propojení potenciometru se vstupním konektorem X1 a se vstupem zesilovače provedeme nízkofrekvenčním stíněným kablíkem.

Před připojením do sítě pečlivě zkontrolujeme všechny spoje podle schématu z obr. 4.4. Elektronku zasuneme do objímky až po kontrole napájecích napětí. Potom připojíme do konektoru X2 reproduktor. Po zapnutí napájecího napětí by se měla elektronka postupně nažhavit a současně s tím by se z reproduktoru měl ozývat slabý brum, který by měl zesílit, když přiložíme např. kovovou část šroubováku k běžci potenciometru P1 (ten by měl být vytočen na maximum). Se zapojením můžeme i trochu experimentovat. Můžeme např. vyzkoušet změnu kmitočtové charakteristiky vypuštěním blokovacího kondenzátoru C1.

4.1.2 Zesilovač s jednou koncovou pentodou EL34

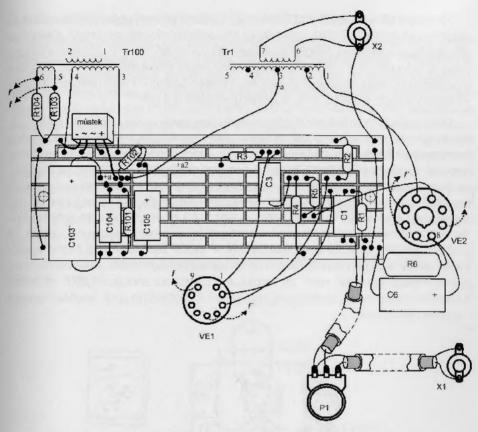
Poměrně dobrých výstedků lze dosáhnout s jednočinným koncovým zesilovačem, osazeným koncovou pentodou EL34 podle *obr. 4.5.* Podle velikosti napájecího napětí je výstupní výkon tohoto zesilovače až 20 W, běžně však více než 5 W. Vlastní zapojení zesilovače je obdobné jako předchozí.

Obr. 4.5 Schéma zesilovače s jednou koncovou pentodou EL34


Trioda (jeden ze dvou systémů ECC83) označená VE1a slouží jako předzesilovač a budič koncové pentody. Vstupní signál je ze vstupního konektoru X1 (INPUT) přiváděn na potenciometr P1, který slouží jako regulátor hlasitosti (VOLUME). Signál je z běžce P1 přiváděn přes kondenzátor C1 na mřížku VE1b. Odporem R2 v katodě je nastaveno mřížkové předpětí. Zatěžovací odpor R3 v anodě můžeme zvolit na zatížení 0,25 W, protože velikost protékajícího proudu je asi 1 mA. Koncová pentoda EL34 je zapojena v tzv. ultralineárním zapojení, které je charakteristické (třebaže jeho název není přesný, avšak vžitý) spojením katody s třetí mřížkou (mřížkové předpětí pentody se vytváří na katodovém odporu R6, který je blokován proti zemi elektrolytickým kondenzátorem C6) a zejména pak zapojením druhé mřížky pentody na odbočku výstupního transformátoru (vývod 2), která je na 43 % závitů od studeného konce (vývod 3). Výstupní transformátor Tr1 je navržen tak, aby impedance primárního vinutí (vývody 1–3) odpovídala hodnotě zatěžovacího odporu v anodě podle katalogu, tj. cca 3 kΩ. Je patrné, že výstupní

transformátor je určen pro dvojčinný koncový stupeň (viz článek 4.2.1), zde používáme jeho polovinu. Sekundár je přiveden na svorky výstupního konektoru X2 (OUTPUT), do něhož se připojuje reproduktor Re.

Zdrojová část je obdobná jako zapojení z *obr. 4.4.* Proti předchozímu v něm nalezneme změnu ve velikosti filtračního elektrolytického kondenzátoru C103. Tento kondenzátor musí být určen na použíté stejnosměrné napětí, tj. min. na 400 V, což je poněkud problematické. Potřebnou hodnotu 500 µF složíme buď z více dílů menší kapacity, nebo použijeme větší elektrolytický kondenzátor s radiálními vývody (např. z produkce JJ electronic), který pak musíme upevnit objímkou na šasi.


Datší změna je v obvodu žhavení elektronek. Protí pronikání brumu (modulace síťového kmitočtu 50 Hz do užitečného signálu) je vytvořen umělý střed žhavicího napájení, který se spojí se zemí. Pokud nepomůže vytvoření souměrného středu, někdy se odpory R103 a R104 nahrazují drátovým potenciometrem o hodnotě např. $330~\Omega$, jehož krajní vývody se zapojí na napájecí napětí a střed se uzemní (viz *obr. 4.31*). Při provozu potom otáčíme běžcem potenciometru, až nalezneme minimální brum.

Poznámka: Mezi vývod 3 síťového transformátoru Tr100 a usměrňovací blok můžeme vložit pojistku s hodnotou 250 mA.

Obr. 4.6 Osazení šasi zesilovačem s jednou koncovou pentodou EL34

Zesilovač opět můžeme postavit na univerzálním šasi z *obr. 4.3.* Osazení je znázorněno na *obr. 4.6.* Elektronku VE1 typu ECC83 umístime do objimky noval a koncovou pentodu EL34 do jedné z objimek oktal (v našem případě do levé z čelního pohledu).

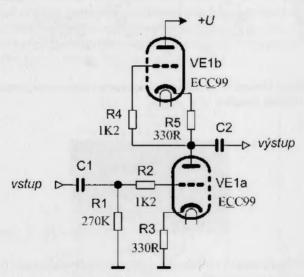
Obr. 4.7 Rozmístění součástek zesilovače s jednou koncovou pentodou EL34

Prakticky všechny součástky (odpory, kondenzátory a usměrňovací blok – můstek) připájíme na univerzální desku, např. podle *obr. 4.7.* Odpor R6 zvolíme na zatížení 5 W a raději jej umístíme mimo desku, ostatní odpory mohou být pro zatížení 0,5 W. Kondenzátory musí být pro napětí 400 V (v případě vyššího napájecího napětí je třeba zvýšit i tuto hodnotu), kromě C6, který postačí pro napětí 63 V. O kondenzátorech C101 a C102 na primární straně siťového transformátoru jsme již hovořili v článku 4.1.1. Pokud je použíjeme, musí být na napětí minimálně 630 V.

Spoje provedeme buď ohebným nebo pevným vodičem s izolací PVC o průřezu nejméně 0,35 mm². Spoje označené přerušovanou čarou označující rozvod žhavicího napětí pro katody elektronek provedeme dvěma mírně zkroucenými vodiči s izolací PVC o průřezu 0,5 nebo 0,75 mm². Tímto vodičem provedeme i propojení zemnicích spojů. Signálové propojení potenciometru se vstupním konektorem X1 a se vstupem zesilovače provedeme nízkofrekvenčním stíněným kablikem.

Propojení síťové zástrčky XZ (obsahuje rovněž vypínač a pojistku) k primárnímu vinutí transformátoru Tr100) provedeme třípramenným kabelem (např. zbytek ze síťové šňůry, kde černá nebo hnědá značí fázový vodič, modrá – pracovní nulový vodič a zelenožiutá – ochranný vodič, který dobře připojíme např. pod šroubek s podložkou k šasi). Propojení sekundáru transformátoru Tr1 s konektorem X2 provedeme vodičem s izolací PVC o průřezu alespoň 0,5 mm².

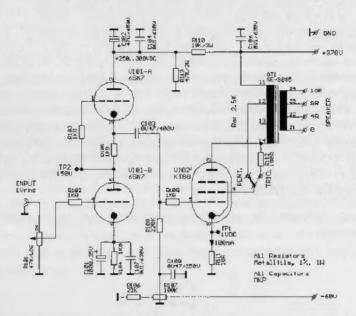
Před zapnutím pečlivě zkontrolujeme všechny spoje podle schématu z *obr. 4.5.* Nesmíme zapomenout na to, že použité napájecí napětí je poměrně vysoké a životu nebezpečné! Zatím neosazujeme elektronky. Zařízení připojíme do sítě a změříme napájecí napětí na příslušných špičkách patic pro elektronky v místě anod a žhavení. Je-li vše v pořádku, připojime do výstupního konektoru X2 reproduktor o impedanci nejméně 4 Ω a postupně zasuneme elektronky. Po chvíli (než se nažhaví katody elektronek) by měl být v reproduktoru slyšet slabý brum. Přiložením šroubováku na vstup zesilovače (pozor na dotyk s kostrou!) by se brum měl výrazně zvětšit. To je dobrá známka toho, že zesilovač pracuje. Protože zapojení nemá žádné nastavovací prvky, je velká pravděpodobnost, že zesilovač bude dobře pracovat na první pokus. Pokud tomu tak není, zkontrolujeme napětí na anodách (příp. mřížkách a katodách) elektronek. Většinou je chyba např. v chybějícím spoji, součástce nebo i chybné elektronce.



MIKROYLANOU TROUBU NEPOTŘEBLIEME - VEČEŘE MU OHŘÍVÁM NA ELEKTRONKOVÉM ZESILOVAČI.

4.1.3 Další zapojení jednočinných zesilovačů

Konstrukce zesilovačů pro věrný poslech s minimálním zkreslením (tedy obvykle třídy A) obsahují mnohdy i velmi zajímavá obvodová řešení. Příkladem je zapojení předzesilovače s aktivní zátěží, s jejíž pomocí lze dosáhnout výstupního signálu s velmi dobrou symetrií kolem středu napájecího napětí. Principem je zapojení druhé elektronky místo anodového zatěžovacího odporu. Toto zapojení se v anglosaské literatuře často nazývá µ–sledovač (µ–follower, Mu follower, Mu amplifier, Cascoded Cathode Amplifier) nebo SRPP (z angl. Series Regulated Push-Pull). Principiální schéma (s hodnotami součástek pro dvojitou triodu ECC99) je uvedeno na obr. 4.8. Při tomto zapojení jsou shodné hodnoty odporů na katodách obou elektronek (tj. R3 = R5). V klidovém stavu je na anodě dolní elektronky (VE1a) napětí rovné polovině napájecího napětí, takže výstupní signál bude symetrický. Je třeba, aby i elektronky měly velmi podobné parametry. Další informace lze získat např. na stránkách [W23] nebo [W27].

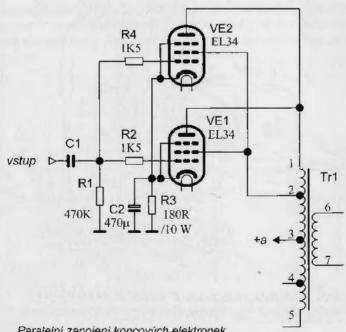

Pozn. red.: Vzhledem ke vstupní impedanci elektronek není hodnota odporů R2 a R4 kritická.

Obr. 4.8 Princip µ-sledovače (SRPP)

Na obr. 4.9 je ukázka komerčně vyráběného stereofonního koncového zesilovače ve třídě A s koncovými pentodami KT88 (firma K. Boehm). Ze schématu (obr. 4.9a) je patrné, že ve vstupní části je využita dvojitá trioda 6SN7 v zapojení SRPP, která budí koncový stupeň osazený koncovou pentodou KT88. Přepínačem lze zvolit napájení druhé mřížky koncové elektronky buď z odbočky výstupního

transformátoru (tzv. pentodové zapojení), nebo z anody (tzv. triodové zapojení). Na šasi zesilovače (obr. 4.9b) jsou osazeny dva shodné kanály (stereofonní zesilovač).

Obr. 4.9a Příklad komerčně vyráběného zesilovače s koncovými pentodami KT88 – schéma zapojení


Obr. 4.9b Příklad komerčné vyráběného zesilovače s koncovými pentodami KT88 – pohled na zesilovač

Výkon koncového stupně ve třídě A, za který můžeme považovat jednočinné zesilovače z článků 4.1.1 a 4.1.2, lze zvyšovat při stejné zátěží prakticky jen zvýšením napájecího napětí. To je však cesta, kterou nemůžeme jít libovolně, neboť limitní hranicí jsou mezní parametry použité koncové elektronky (v tabulce 7 je uvedeno porovnání důležitých parametrů některých koncových elektronek).

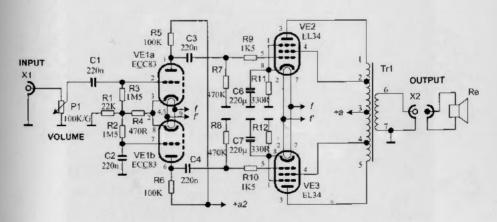
Tabulka 7 Porovnání vlastností některých koncových elektronek

Elektronka	Max. výkon P _a [W]	Max. katodový proud / _k [mA]	Max. anodové napětí U _a [V]	Poznámka
EL84	12	65	300	Pentoda, patice noval
EL34	25	150	800	Pentoda, patice oktal
6L6	30	134	500	Pentoda, patice oktal
KT88	42	230	800	Pentoda, patice oktal
300B	40	70	450	Trioda, nožičková patice

Koncovou pentodu EL34 lze díky prakticky shodnému osazení patice (odlišnost je pouze ve vyvedení třetí mřížky, kterou stejně většinou externě zapojujeme na potenciál katody nahradit pentodami 6L6, resp. KT88. Je však třeba mít na paměti poněkud odlišné parametry, zejména jiné předpětí mřížky, které je třeba změnit. Při zvýšení napájecího napětí a zvýšení proudů je pak třeba správně dimenzovat hodnoty součástek (výkonové zatížení odporů a napětí pro kondenzátory).

Výkon koncového stupně zesilovače lze zvýšit rovněž paralelním spojením dvou (a případně i více) koncových elektronek. Tím dosáhneme při stejném napájecím (a tedy i anodovém) napětí dvojnásobný (příp. i vícenásobný) proud, a tím i výkon. Na obr. 4.10 je znázorněn koncový stupeň zesilovače, u něhož jsou zapojeny dvě koncové pentody EL34 paralelně. Srovnáním s obr. 4.5 zjistíme, že katodový odpor R3, na němž vlastně vzniká mřížkové předpětí, má přibližně poloviční hodnotu proti zapojeni s jednou pentodou (hodnota blokovacího kondenzátoru C2 je však dvojnásobná). Je to proto, že katodový proud v tomto zapojení je přibližně dvojnásobný (proto i odporové tělisko musime zvolit na zatížení 10 W). Budeme-li chtít dosáhnout dvojnásobného výkonu, musí být rovněž impedance primárního vinutí výstupního transformátoru Tr1 poloviční. Teoreticky lze tímto postupem paralelně připojovat více koncových elektronek. Připomeňme, že i v tomto případě je třeba, aby vlastnosti koncových elektronek byly shodné. K tomuto účelu se elektronky vybírají a prodávají již jako dvojice nebo čtveřice. U zesilovačů s vyšším komfortem lze volit i výstupní výkon zesilovače připínáním paralelně připojených koncových elektronek.

MAŠ PRAVDU, TEN ZVUK Z ELEKTRONKOVÉHO ZESILOVAČE JE TAKOVÝ TEPLEJŠÍ ...

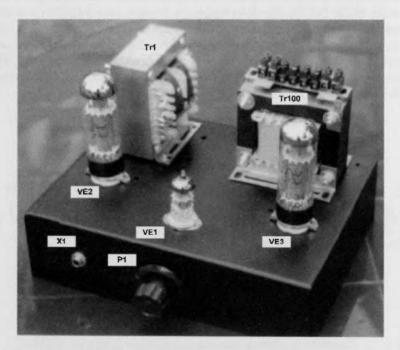

4.2 ZESILOVAČE S DVOJČINNÝM KONCOVÝM STUPNĚM

Jednočinné zesilovače jsou velmí vhodné zejména pro domácí poslech s vysokou kvalitou, s výkony do 30 až 50 W. Jsou též vhodné pro hudební nástroje s kmitočtovým spektrem v nejcitlivější oblasti pro lidské ucho, jako je např. kytara. Pro jiné nástroje (basová kytara, varhany apod.), příp. pro zpěv či pro obecné ozvučení větších prostorů, je však třeba již mít k dispozici zesilovač s vyšším výkonem. To je však s jednočinným stupněm již technicky a energeticky téměř vyloučeno. Potom je třeba využít zapojení dvojčinné, tedy se dvěma koncovými elektronkami ve třídě AB nebo B.

Zapojení koncového zesilovače s elektronkami v dvojčínném zapojení se během let příliš nezměnila a doznala určitého optima, které umožňuje dosáhnout rozumného výstupního výkonu při poměrně malém množství součástek.

4.2.1 Zesilovač se dvěma EL34 zapojenými jako dvojčinný koncový stupeň

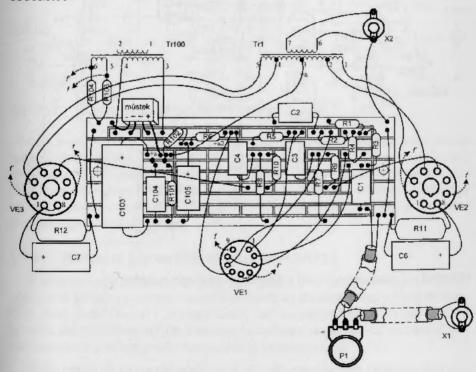
Na obr. 4.11 je uvedeno schéma koncového zesilovače se třemi elektronkami. Ve funkci prvního stupně a zároveň budiče a invertoru pro koncový stupeň je použita dvojitá trioda ECC83. Koncový stupeň je zapojen jako dvojčinný v protitaktu (tzv. push-pull) v ultralineárním zapojení s výstupním transformátorem a je osazen dvěma výkonovými pentodami EL34. Zapojení je jednoduché, neobsahuje korekční obvody, přesto umožňuje vytvořit koncový zesilovač s výkonem až 100 W. V uvedeném případě bude výkon zesilovače 40 W, což vyplývá ze zvoleného napájecího napětí.



Obr. 4.11 Zapojení koncového zesilovače s dvojčinným koncovým stupněm

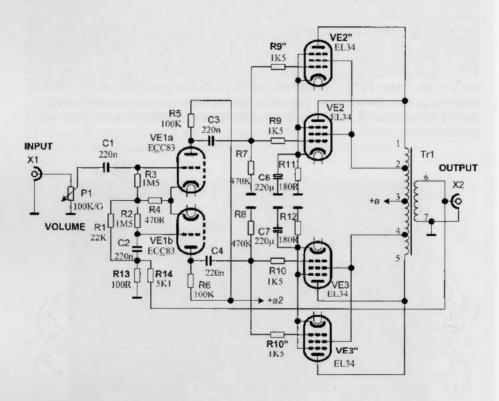
Při podrobnější prohlídce zapojení je zcela evidentní, že zapojení vzniklo rozšířením jednočinného koncového stupně z *obr. 4.5.* Vstupní signál je přiváděn ze vstupního konektoru X1 přes oddělovací kondenzátor C1 na mřížku první triody VE1a. Po zesílení je pak přes kondenzátor C3 přiveden na první mřížku první výkonové elektronky VE2. Vazbou přes katody je signál přiváděn na druhou triodu VE1b, která pracuje jako invertor, a odtud na první mřížku druhé výkonové elektronky VE3. Tím je zajištěno, že každá z koncových elektronek zesiluje signál opačné pofarity, takže dojde ke znásobení zesilovacího účinku. Elektronky VE2 a VE3 tvoří dvojčinný koncový stupeň v ultralineárním zapojení.

Impedance primárního vinutí výstupního transformátoru Tr1 (vývody 1–3, resp. 3–5) musí odpovídat katalogové hodnotě zatěžovacího odporu v anodě, tj. cca $3~k\Omega$. Druhé mřížky obou pentod jsou zapojeny na odpovídající odbočku výstupního transformátoru (vývod 2, resp. 4), která je na 43 % závitů od středu vinutí (vývod 3), tj. jedná se o ultralineární zapojení. Sekundár je přiveden na výstupní konektor X2 (OUTPUT), do něhož se připojuje reproduktor Re.


Zapojení napájecího zdroje zde není uvedeno, neboť je shodné se zdrojem z *obr. 4.5.* Zesilovač opět můžeme postavit na univerzálním šasi z *obr. 4.3*, pohled na osazený zesilovač je na *obr. 4.12.* Elektronka VE1 (ECC83) je opět umístěna v objímce noval, obě koncové elektronky EL34 v objímkách oktal.

Obr. 4.12 Osazení šasi zesilovačem s dvojčinným koncovým stupněm

Obdobně jako v případě jednočinného zesilovače můžeme všechny součástky připájet na univerzální desku, příklad osazení je uveden na *obr. 4.13.* Odpory R11 a R12 musíme dimenzovat na zatížení 5 W a obdobně jako u zapojení zesilovače z *obr. 4.7* je raději umístíme mimo desku. Ostatní odpory mohou být na zatížení 0,5 W, kondenzátory musí být pro napětí 400 V (v případě vyššího napájecího napěti je třeba tuto hodnotu zvýšit), kromě C6 a C7, které postačí pro napětí 63 V (tyto kondenzátory můžeme umístit paralelně s odpory R11 a R12). Spoje provedeme obdobně jako u zesilovače z článku 4.1.2.

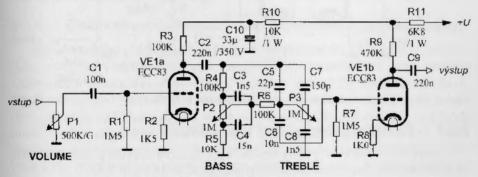

Na závěr pečlivě zkontrolujeme spoje podle schématu (opět připomeňme, že použité napájecí napětí je poměrně vysoké a životu nebezpečné!). Elektronky osadime až po ujištění, že všechna napájecí napětí jsou v pořádku. Potom zasuneme elektronky do patic a po nažhavení znovu změříme napětí na anodách a katodách elektronek. Je-li vše v pořádku, měl by být v reproduktoru (o impedanci nejméně 4 Ω s výkonem alespoň 5 W připojeném na výstupní konektor X2) slyšet slabý brum, který se musí výrazně zvětšit, když se dotkneme například špičkou šroubováku mřížky triody VE1a. Tím máme prakticky vyhráno, zesilovač pracuje většinou na první pokus. Pokud tomu tak není, zkontrolujeme napětí na anodách (příp. mřížkách) elektronek. Chybu většinou hledejme v chybějícím spoji nebo vadné součástce.

Obr. 4.13 Rozmistění součástek zesilovače s dvojčinným koncovým stupněm

4.2.2 Další zapojení dvojčinných koncových stupňů

Zapojení koncového zesilovače z *obr. 4.11* lze měnit a vylepšovat podle zkušeností či způsobu využití. Na *obr. 4.14* je uvedeno doplněné zapojení zesilovače, u něhož je zavedena zpětná vazba ze sekundárního vinutí výstupního transformátoru pro zlepšení stability zesilovače při větším výkonu a doplněna ďalší paralelní dvojice koncových elektronek. Doplněné součástky jsou zvýrazněny tučně u popisu. Zesilovač můžeme rovněž doplnit některým předzesilovačem z kapitoly 4.3.

Obr. 4.14 Upravený zesilovač s dvojčinným koncovým stupněm


4.3 ELEKTRONKY V OBVODECH ZESILOVAČŮ

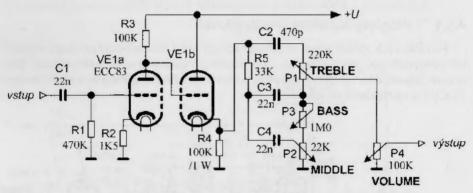
V další části se alespoň stručně zmíníme o některých dalších zapojeních s elektronkami a o zkušenostech z praktického provozování elektronkových zesilovačů.

Pozn. red.: Budete-li se chtit podívat na charakteristiku toho kterého korektoru, je dobré si stáhnout utilitku **Tone Stack Calculator** z [W27]. Více informací najdete v kap. 8.

4.3.1 Klasický korekční předzesilovač

Při některých aplikacích je vhodné předřadit před elektronkový koncový stupeň též předzesilovač (angl. *preamp = preamplifier*), osazený opět elektronkami. Zapojení "klasického" dvoupásmového korekčního předzesilovače s elektronkou ECC83 je naznačeno na *obr. 4.15*.

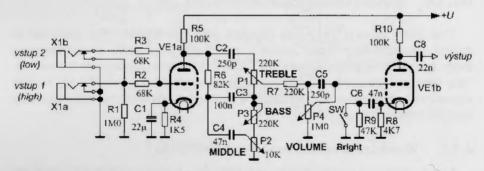
Obr. 4.15 Zapojení klasického korekčního předzesilovače


Obě triody VE1a a VE1b jsou zapojeny jako běžné zesilovače, mezí než je zařazen korekční stupeň bez zpětné vazby. Signál je přiváděn na mřížku první triody ze vstupního potenciometru P1 (VOLUME), kterým regulujeme úroveň signálu. Potenciometrem P2 (BASS) se reguluje úroveň nízkých kmitočtů průchozího signálu, potenciometrem P3 (TREBLE) úroveň vysokých kmitočtů. Potenciometry mají mít logaritmický průběh.

4.3.2 Korekční předzesilovač typu MARSHALL

V elektronkových zesilovačích firmy MARSHALL určených zejména pro hudební nástroje se setkáme s korekčními předzesilovačí a s předzesilovačí s různými typickými efekty (např. Crunch – "křupavý" zvuk). Zajimavostí je, že v těchto zesilovačích se velmi často používají katodové sledovače (zapojení se společnou anodou). Schéma korekčního předzesilovače tohoto typu je uvedeno na *obr. 4.16*.

První triođa VE1a dvojité elektronky ECC83 pracuje jako zesilovač signálu, jehož anoda je přímo navázána na druhou triodu VE1b. Ta pracuje jako katodový

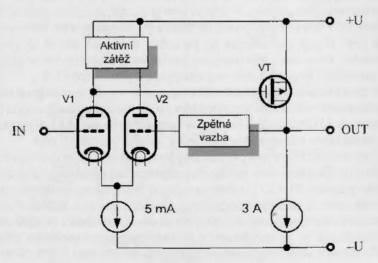

sledovač, jehož napěťové zesílení je menší než 1. Výhodou je však poměrně nízká výstupní impedance, která umožňuje připojit korekční člen. Vysoké kmitočty se regulují potenciometrem P1 (TREBLE), střední kmitočtové pásmo potenciometrem P2 (MIDDLE) a nízké kmitočty potenciometrem P3 (BASS). K dalšímu zesilovacímu stupní je signál přiváděn přes potenciometr P4 (VOLUME), kterým se nastavuje úroveň hlasitosti.

Obr. 4.16 Zapojeni korekčního předzesilovače typu MARSHALL

4.3.3 Korekční předzesilovač typu FENDER

Elektronkové zesilovače firmy FENDER pro hudební nástroje používají korekční předzesilovač, jehož typické schéma je znázorněno na *obr. 4.17*.

Obr. 4.17 Zapojení korekčního předzesilovače typu FENDER


V principu jde opět o obdobné zapojení z obr. 4.16 s poněkud pozměněnými hodnotami odporů i kondenzátorů. Korekční člen je zde zařazen do anodového obvodu první triody VE1a. Vysoké kmitočty se nastavují potenciometrem P1 (TRE-BLE), střední kmitočtové pásmo potenciometrem P2 (MIDDLE) a nízké kmitočty potenciometrem P3 (BASS). K dalšímu zesilovacímu stupni VE1b tvořenému dru-

hou triodou je signál přiváděn z běžce potenciometru P4, který slouží jako regutátor hlasitosti. Tento potenciometr je současně mřížkovým odporem pro VE1b. V katodě triody VE1b je kromě katodového odporu R8 zařazen ještě korekční RC člen, jehož charakteristiku můžeme skokově změnit spínačem SW. Za pozomost stojí ještě zapojení vstupní části předzesilovače. Spínací kontakty v konektorech typu "jack" zajišťují, že při nezapojeném konektoru je vstup uzemněn a při zasunutí konektoru do příslušně zásuvky dojde k zapojení vhodně kombinace vstupních odporů a tím dojde k úpravě vstupní úrovně signálu (zdroj signálu s vysokou impedancí zapojujeme do zásuvky X1a, zdroj s nízkou impedancí do zásuvky X1b).

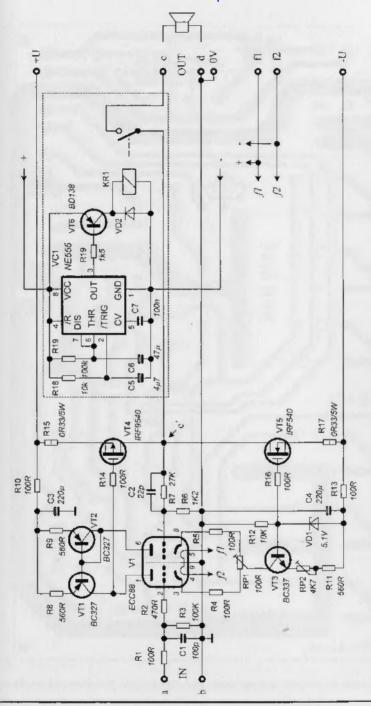
Zasunutím konektoru do vstupu "low" je aktivní dělič napětí 68k + 68k. Zasunete-li konektor do vstupu "high", je vstupní impedance 1 $M\Omega$, oba (nyni paralelně řazené) odpory R2 a R3 nemají na impedanci vliv, jelikož vedou přímo na mřižku elektronky.

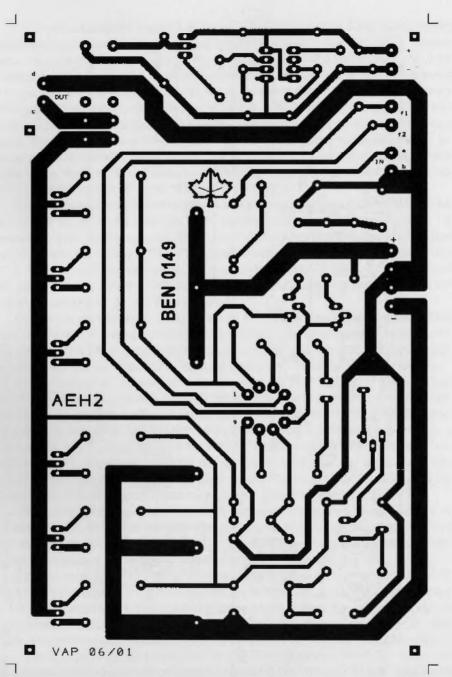
4.3.4 Elektronkový předzesilovač pro unipolární koncový stupeň

Někteří hudební "fajnšmekři", zejména z řad hudebníků – kytaristů a baskytaristů, zůstávají věrní klasice, tedy elektronkovým zesilovačům nebo alespoň zesilovačům simulujícím "elektronkový" zvuk (viz např. [C2]). Dnes se zdá, že po téměř nekonečných diskusich o věrnějším zvuku a moderních způsobech řešení i tato technika opět nachází své místo na slunci a přes své zdánlivé nevýhody bude i nadále předmětem hledání nových možnosti a nových konstrukcí. V této kapitole je popsán návrh konstrukce koncového stupně nízkofrekvenčního zesilovače v tzv. hybridním provedení. Původní zapojení vychází z konstrukce, kterou na svých internetových stánkách [W9] uveřejnil Generozzo Cossa.

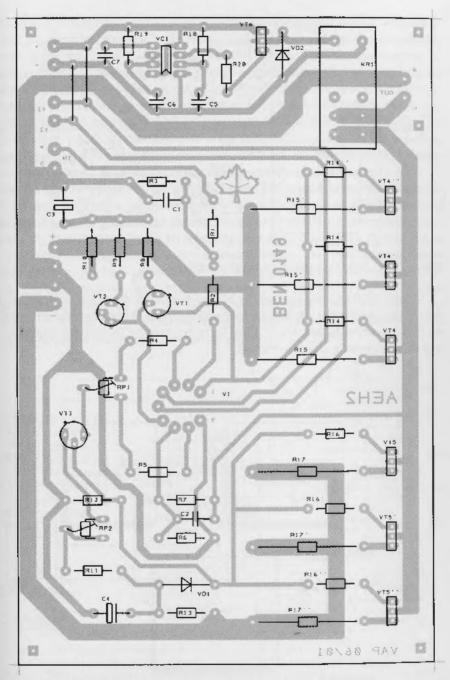
Obr. 4.18 Principiální schéma hybridního koncového zesilovače

Koncepce zesilovače vychází ze snahy "smíchat" módu a "teplý" zvuk starých elektronkových zesilovačů s možností využití tranzistorů typu MOSFET. Výsledkem je hybridní výkonový zesilovač třídy podle principiálního schématu z *obr. 4.18*. Elektronka V1 pracuje jako budič výkonového stupně, který je tvořen tranzistorem VT typu MOSFET pracujícím ve třídě A. Druhá elektronka V2 pracuje jako diferenciální stupeň se společnou katodou s V1 a má do řídicí mřížky zavedenu zpětnou vazbu. Tím je rovněž zajištěn stejnosměrný pracovní bod koncového stupně. Tranzistor koncového stupně VT pracuje ve třídě A, což prakticky znamená, že jim trvale protéká poměrně velký proud. Tím se značně zahřívá a je nutno jej chladit. Chladič, na němž bude umistěn, musí mít tepelný odpor alespoň 0,2 K/W, případně bude nutno použit i nucené chlazení (ventilátor).

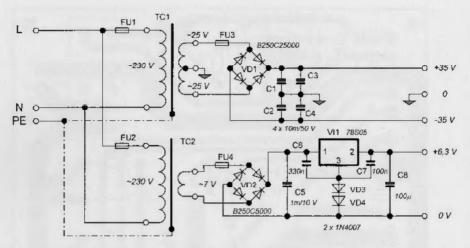

Zapojení koncového stupně zesilovače, které vychází z principiálního schématu z *obr. 4.18*, je uvedeno na *obr. 4.19*. Elektronkový diferenciální zesilovač V1 je osazen dvojitou triodou typu ECC88. Aktivní zátěž je tvořena proudovým zrcadlem realizovaným tranzistory VT1 a VT2. Zdroj proudu v katodách triod tvoří tranzistor VT3. Trimrem RP1 se nastavuje stejnosměrný pracovní bod koncového stupně tak, aby v bodě c´ bylo napětí blízké 0 V a trimrem RP2 se nastavuje proud 5 mA katodami elektronek (ti. 2.5 V na odporu R11).


Koncový stupeň je tvořen tranzistorem VT4, k němuž lze v případě potřeby dosažení většího výkonu připojit paralelně další tranzistory. Zdroj konstantního proudu tvoří tranzistor VT5, v případě rozšíření koncového stupně se opět může paralelně rozšířit o další zdroje proudu. Tranzistory musí být upevněny na dostatečně velký chladič.

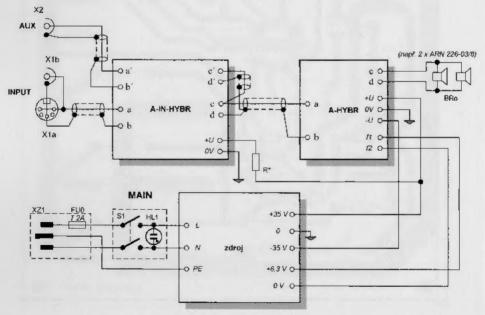
Použití elektronky v zesilovačí přináší některé drobné problémy, které je třeba vyřešit. Po dobu nažhavení systému elektronky je nutno odepnout reproduktor, aby do chvíle úplného nažhavení nedošlo k jeho zničení průchodem velkého proudu z důvodu rozvážení obvodu. Pro tento účel je použit zpožďovací obvod tvořený časovačem VC1 (integrovaný obvod NE555) a tranzistorem VT6, který přes kontakt relé KR1 připojí reproduktor až po určité době (na *obr. 4.19* jde o část v čárkovaném ohraničení). Pro napájení zpožďovacího obvodu lze použít stejnosměrné napětí pro žhavení elektronky, použité relé je na napětí 5 V.


Návrh desky plošného spoje BEN 0149 koncového stupně je uveden na *obr. 4.20*, na desce se počítá i s možností rozšíření koncových tranzistorů na tři stupně (včetně proudových zdrojů). Rozmístění součástek na desce je na *obr. 4.21*. Klišé plošného spoje je ke stažení z internetové adresy knihy, která je uvedena v tiráži.

Zapojení napájeciho zdroje pro koncový zesilovač je znázorněno na *obr. 4.22.* V zapojení je pro každou větev napájeciho napětí použit samostatný transformátor (TC1 jištění pojistkou FU1 a TC2 jištěný pojistkou FU2). Na sekundárních stranách obou transformátorů jsou před usměrňovací můstek vřazeny pojistky FU3, resp. FU4. Anodové napětí je poměrně nízké (70 V) díky vlastnostem použité elektronky. Žhavicí napětí je po usměrnění z důvodu zabránění pronikání brumu do zesilovače stabilizováno integrovaným stabilizátorem VI1 typu 78S05. Toto napětí je použito rovněž pro napájení zpožďovacího obvodu.

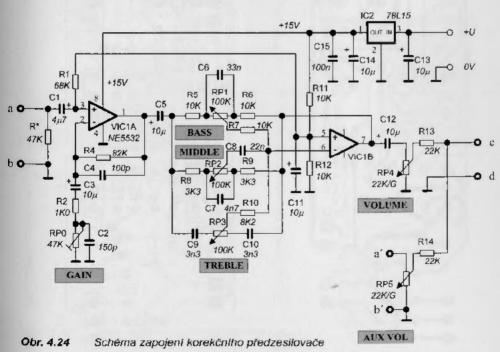


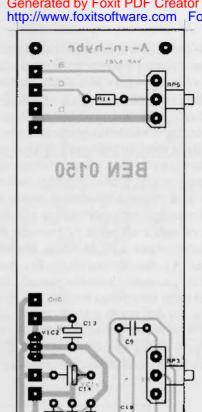
Obr. 4.20 Výkres obrazce plošného spoje BEN 0149 hybridního koncového zesilovače

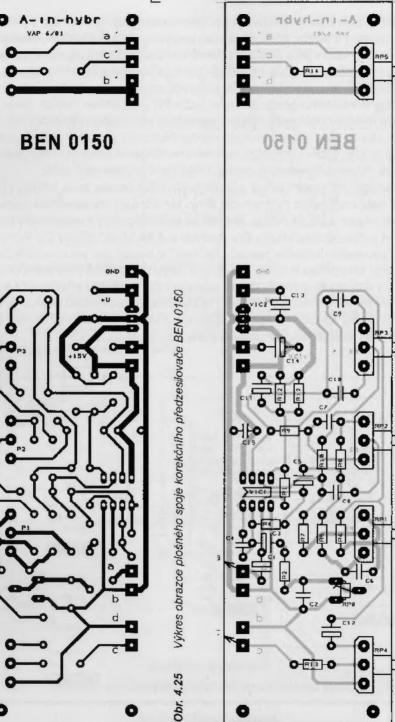


Obr. 4.21 Rozmístění součástek na desce plošného spoje hybridního koncového zesilovače

Obr. 4.22 Schéma zapojení napájecího zdroje


V další části kapitoly naznačíme příklad aplikace výše popsaného koncového hybridního zesilovače v přenosně reproduktorové skříni se zesilovačem pro kytaru, resp. basovou kytaru, tzv. kombo. Tento typ zařízení je oblibený zejména díky své kompaktnosti a snadné mobilitě.

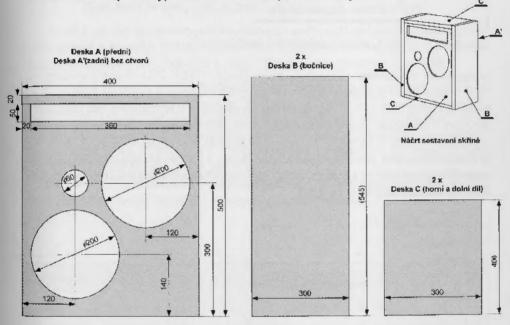



Obr. 4.23 Blokové schéma komba

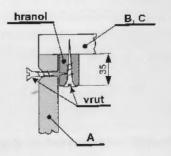
Na obr. 4.23 je znázorněno blokové schéma celého zapojení komba. V předchozi části popsaný hybridní koncový stupeň označený jako A-HYBR je napájen ze zdroje (viz obr. 4.22) a jeho výstup je přiveden na dva paralelně zapojené reproduktory BRe (například typu TVM ARN 226-03/8 o impedanci 8 Ω). Vstup koncového zesilovače je připojen na výstup korekčního předzesilovače označeného A-IN-HYBR. Konstrukce konkrétního předzesilovače může být předmětem dalších úvah, zde použijeme korekční zesilovač s dvojitým operačním zesilovačem NE5532 z obr. 4.24 popsaný např. v [C4]. Výkres plošného spoje BEN 0150 korekčního zesilovače je zobrazen na obr. 4.25 a rozmístění součástek na desce na obr. 4.26. Klišé plošného spoje je ke stažení z internetové adresy knihy, která je uvedena v tiráži.

Mechanické provedení skříně a jednotlivých částí komba bude záviset především na naší zručnosti a možnostech dílny. Mechanický výkres skříně komba je naznačen na *obr.* 4.27. Je zřejmé, že skříň se skládá z přední a zadní desky (deska A, resp. A'), dvou bočnic (desky B) a horního a dolního dílu (desky C). Pro méně náročné provedení, zejměna pak pro začínající kytaristy, lze jako materiál desek použít např. dřevotřísku tloušťky 20–25 mm. Řezy provedeme vždy velmi pečlivě, aby se díly daly dobře sestavit. Vlastní sestavení podle náčrtku na *obr.* 4.27 můžeme provést za pomocí vrutů (4 × 35 mm) se zápustnou hlavou a před sešroubováním na styčné plochy nanést vrstvičku akrylátového tmelu. Před zaschnutím (trvá alespoň 24 hodin) ještě připravíme upevnění předního dílu (deska A).

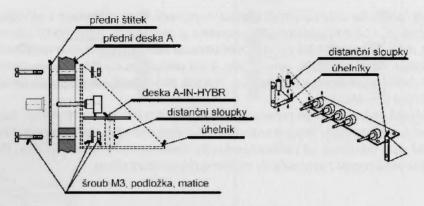
0


0

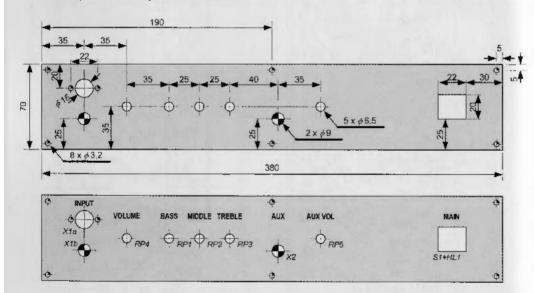
Obr. 4.26


Rozmístění součástek na desce plošného spoje korekčního předzesilovače

Tato deska se vloží do skříně zepředu a připevní vruty na hranoly s průřezem přibližně 25 × 35 mm předem přišroubované a natmelené např. podle náčrtku z *obr. 4.28.* Celou skříň lze po vytvrzení obrousit brusným papírem a natřit nátěrem (např. DIXOL, LUXOL apod.), příp. ji lze polepit vhodnou potahovou textilií (např. nařezaný koberec) či koženkou. Rovněž bude vhodné na horní díl umístit madlo pro přenášení.


Montáž prvků do skříně provedeme až po zaschnutí a vytvrzení skřině. Zdroj včetně transformátoru (resp. transformátorů) připevnime zevnitř na dno skřině, rovněž sem umístíme na distanční sloupky desku koncového zesilovače. Přivod síťového napětí z vypínače S1 můžeme provést buď přímo

Obr. 4.27 Mechanický výkres skřině komba

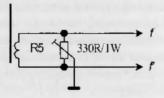


Obr. 4.28 Náčrt způsobu upevnění předního dílu

Obr. 4.29 Příklad upevnění korekčního předzesilovače

vyvedením třížilového síťového kabelu (např. CYSY 3C × 1 mm²) s vidlicí na konci nebo lépe na kombinovanou přístrojovou zástrčku s pojistkou (na *obr. 4.23* označeno jako XZ1 a FU0), kterou umístíme ve spodní části zadního dílu (deska A'). Rozvod napájecích napětí provedeme ohebným barevným izolovaným lankem o průřezu 0,5 až 0,75 mm², signálové propojení mezi konektory X1a, X1b, X2 a předzesilovačem, resp. mezi předzesilovačem a koncovým stupněm provedeme jednožilovým stíněným kabelem a připojení reproduktorů ohebným izolovaným lankem o průřezu alespoň 0,75 mm².

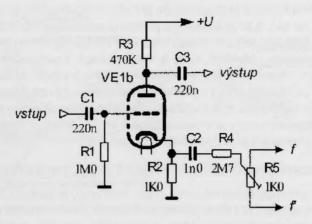
Obr. 4.30 Výkres předniho krycího štitku


Korekční předzesilovač je konstruován pro umístění v horním výřezu předního dilu (desky A). Na obr. 4.29 je znázorněn příklad upevnění korekčního předzesilovače a krycího štítku na desku A. Deska předzesilovače je upevněna přes distanční sloupky k tvarovanému úhelníku, který je vyroben např. z pozinkovaného plechu tloušťky 0,5 mm. Těmito úhelníky je deska přípevněna k přední desce A tak, aby potenciometry procházely otvory v předním krycím štítku. Protože deska korekčního zesilovače je kratší nežli délka krycího štítku, bude třeba úhelníky přišroubovat k desce zapuštěnými šrouby a ty potom překrýt krycím štítkem. Výkres předního krycího štítku (rozměry a popis) je uveden na obr. 4.30.

4.3.5 Omezení brumu způsobeného síťovým napájením

Vysoká vstupní impedance elektronkových zesilovačů je častou příčinou pronikání siťového kmitočtu (50 Hz) do užitečného signátu, které se projevuje rušivým brumem. Způsobů pro odstranění, resp. významného omezení, je několik.

Jednou z hlavních zásad při stavbě elektronkových zesilovačů je použití krátkých nebo stíněných přívodů žhavicího napájení oddělených od signálových vodičů. Další možností je použití stejnosměrného žhavicího napětí, především tam, kde by usměrnění a následná filtrace nečinily problémy zejména z hlediska energetického (viz např. zdroj na *obr. 4.22*). Odstranění brumu vhodným uzemněním jsme naznačili již v článku 4.1.2 (viz *obr. 4.5*).


Na obr. 4.31 je znázorněn způsob omezení brumu nalezením vhodného vyvážení zemnicího spoje žhavicího napájení z transformátoru.

Obr. 4.31 Zapojení pro omezení brumu uzemněním středu žhavicího napájení

Na vývody žhavicího vinutí transformátoru je zapojen drátový trimr o hodnotě 330 Ω na zatížení minimálně 1 W, jehož běžec připojíme na zemnicí signálový vývod. Po oživení zesilovače nastavíme otáčením trimru minimální brum zesilovače.

Další možností omezení brumu je přivedení vhodné úrovně střidavého napětí o siťovém kmitočtu v opačné fázi na jeden ze stupňů zesilovače tak, aby došlo k jeho odečtení, a tím i ke zmenšení rušivého brumu na výstupu zesilovače. Přiklad takového obvodu je uveden na *obr. 4.32.* Do katody posledního stupně předzesilovače je zaveden signál, přivedený z trimru R5 zapojeného mezí vývody žhavicího vinutí transformátoru. Zde se předpokládá, že kapacita vinutí vzhledem

Obr. 4.32 Zapojení pro omezení brumu odečtením střídavého napětí v zesilovačí

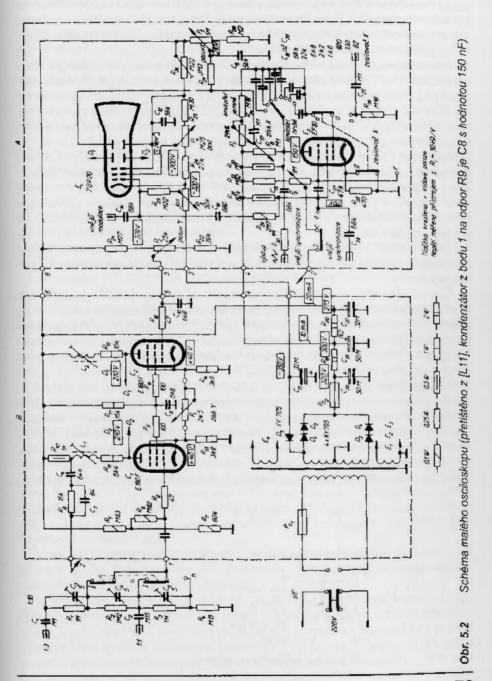
k zemí tvoří společný pôl pro signál, protože žhavicí napětí není připojeno dvojpólově. Poslechem můžeme kontrolovat nejvhodnější nastavení trimru tak, aby na výstupu elektronky byl výrazně potlačen rušivý signál.

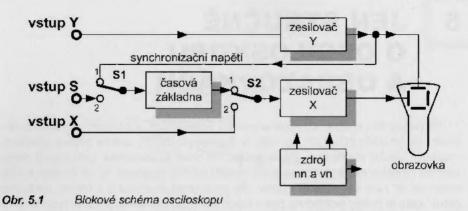
4.3.6 Prodloužení životnosti elektronkových zesilovačů

Elektronka je elektronická součástka, jejíž vlastnosti se během provozu mění (tzv. drift) a jejíž životnost je (bohužel) výrazně omezena. Rovněž způsob mechanického zacházení (upevnění, otřesy apod.) ovlivňuje vlastnosti elektronky (tzv. mikrofoničnost). Důvodem je především změna teplotních parametrů systému (teplotní drift) a zejména pak postupně klesající schopnost emise katody. Z těchto důvodů se elektronky vyrábějí s paticí pro snadnější výměnu. Životnost elektronek lze prodloužit dodržením těchto zásad:

- nezvyšovat žhavicí napětí (doporučena je stabilizace žhavicího proudu nebo napětí), někdy se elektronky i podžhavují (tj. žhaví menším napětím);
- anodové napětí zapínat až po nažhavení elektronek (použít buď vakuovou usměrňovací diodu, např. v zapojení podle obr. 3.1, nebo anodové napětí spínat spínačem);
- zesílovač v případě delší nečinnosti přepnout do stavu připravenosti (tzv. Stand-by) vypnutím anodového napětí;
- zesilovač používat na plný výkon jen na omezenou a nezbytnou dobu,
- při výměně elektronek za jiný typ nastavit správné předpětí na mřížce (tzv. bíasing).

JEN STRUČNĚ O OSCILOSKOPU A OBRAZOVKÁCH


Při psaní této knížky, a zejména pak při korekturách a debatách s nakladatelstvím, mi mnohdy přišlo lito, že není v rozumných silách autora popsat všechny možnosti využití elektronek. Řada aplikací je dnes již zastaralá, překonaná nebo naopak mnohdy může dokonce budit dojem určitého snobství. Ať už se nám to líbí nebo ne, ať nám to je líto či nikoliv, éra elektronek skončila a s tím se nedá nic dělat. Jako je hezký pohled na parní lokomotivu plazící se krajinou a vypouštějící oblaka páry, kouře a sazí, jako je zajímavý pohled na archaický telefon s kličkou, tak nějak obdobně může někdo uronit slzu při pohledu na rozměrnou hudební skříň s magickým okem či na televizní přijímač TESLA 4001A z roku 1953. A přitom většina z nás se ráda vrátí do dnešní reality moderních rychlovlaků, mobilních telefonů či multimediálních zařízení. Přesto je dobře, že jsou stále nadšenci, kteří "zašlou slávu" elektronek připomínají a udržují.


Již v úvodní kapitole jsme se zmínili o tom, že elektronka jako obrazovka televizoru či počítače je postupně nahražována moderními LCD nebo plazmovými zobrazovači. Obdobná situace je i v oblasti měřicích zařízení – osciloskopů, spektroskopů a podobně. Osciloskop (někdy též oscilograf) je zařízení, kterým lze sledovat průběhy elektrických signálů na obrazovce. Moderní osciloskopy jsou vybaveny řadou doplňujících funkcí, které zobrazovaný průběh umožňují ukládat, vzorkovat, dále zpracovávat a třeba i přenést do počítače. Podrobnější informace lze nalézt např. v monografii [L12]. Hlubší rozbory této problematiky by byly nad rámec poslání této knihy, proto se zde zmíníme pro ilustraci alespoň stručně o problematice využití elektronek a obrazovek v osciloskopu.

Z blokového schématu na obr. 5.1 jsou patrné základní části osciloskopu:

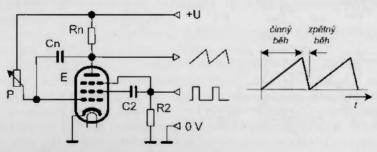
- obrazovka,
- zesilovač Y pro vertikální vychylování,
- zesilovač X pro horizontální vychylování,
- časová základna (pro horizontální vychylování),
- zdroj nízkého a vysokého napětí.

Obrazovky osciloskopu (v tomto okamžíku máme na mysli vakuové obrazovky) mají obvykle elektrostatické vychylování. Principem je vychýlení paprsku elektronů (emitovaných z katody) elektrostatickým polem vytvořeným přiložením napětí mezi vychylovací destičky. Přivedeme-li na horizontální vychylovací destičky napětí pilového průběhu (lineárně se zvětšující s časem), dosáhneme tak časového rozkladu, kterého využijeme při sledování napěťového signálu přivedeného na druhou dvojici vychylovacích destiček (vertikálních). Pokud je měřené napětí dostatečně

velké, lze jej přivést na vychylovací destičky přímo. Většinou je však musíme zesílit měřicím zesílovačem Y s vlastnostmi, které jsou určující pro kvalitu celého osciloskopu. Abychom mohli sledovat děj na obrazovce, musíme zajistit spouštění pilového napětí z časové základny v pevném vztahu ke kmitočtu sledovaného signálu. Musíme tedy do časové základny zavést synchronizační napětí, které je odvozeno buď ze sledovaného signálu (interní synchronizace) nebo z jiného vnějšího signálu (tzv. externí synchronizace). K volbě způsobu synchronizace slouží přepínač S1. Pro některá měření je vhodné přivést rovněž na horizontální destičky měřený signál. Pro ten případ je určen přepínač S2, kterým vyřadíme časovou základnu a přivedeme vnější signál na horizontální zesilovač X.

Jako příklad aplikace elektronek v oboru měřicí techniky je na *obr. 5.2* přetištěno schéma zapojení malého osciloskopu převzaté z [L11], jehož pomocí si popíšeme činnost osciloskopu. Zvolená koncepce umožňuje dosáhnout vlastností pro využití v oblasti elektroakustiky, televizní techniky a obecné elektrotechniky: šířka pásma vertikálního zesilovače je 5 Hz až 4 MHz (s poklesem zesílení 3 dB), citlivost na kmitočtu 150 kHz je 150 mV/cm (předpokládá se malá obrazovka s průměrem stínítka 7–10 cm), časová základna může pracovat v osmi polohách přepínače volby kmitočtu od 25 Hz do 60 kHz. Z dnešního pohledu se nejedná o žádné špičkové zařízení, je však třeba si uvědomit, že nám jde zejména o seznámení se s principy konstrukce osciloskopu jako takového.

Měřicí zesilovač Y je osazen dvěma elektronkami E180F (E1 a E2) v diferenciálním zapojení. Kladný impulz napětí na řídicí mřížce elektronky E1 se po zesílení objeví v záporné polaritě na její anodě a v kladné polaritě na její katodě. Z katody elektronky E1 je přiveden přes potenciometr P1 na katodu elektronky E2, která má nastavené pevné mřížkové předpětí. Kladný impulz na katodě elektronky E2 tedy způsobí pokles anodového proudu, a tím i zvýšení anodového napětí, takže na anodě elektronky E2 bude zesílený impulz v kladné polaritě (opačné, než na anodě elektronky E1). Diferenciální zesilovač tak dodává na vertikální vychylovací destičky D1 a D2 symetrické napěti, což umožňuje zobrazit průběh vstupního im-


pulzu na stinítku obrazovky. Potenciometrem P1 lze nastavit zisk měřicího zesilovače v rozsahu 1:4. Protože se nastavení zisku uskutečňuje změnou stupně záporné zpětné vazby, bude mít měřicí zesilovač poněkud lepší vlastnosti (zkreslení a přebuditelnost) při nižším zisku.

Pro správnou činnost je třeba, aby obě napětí přiváděná na destičky z anod elektronek E1 a E2 měla stejnou amplitudu (ale opačnou polaritu). Protože elektronka E2 je buzena elektronkou E1 z katody (tzv. katodový sledovač se zesílením menším než 1), musíme vzniklou nesymetrii vyrovnat zvětšením anodového odporu u elektronky E2. Rozdíl v zesílení obou polovin zesílovače v oblasti vyšších kmitočtů není významný a lze jej vyrovnat nastavením indukčností L1 a L2 (výchozí hodnota je 120 mH). Nastavením stejnosměrného pracovního bodu řídicí mřížky elektronky E2 potenciometrem P2 lze posouvat obraz ve svislém směru. Předpětí řídicí mřížky elektronky E1, které vytváří dělič R5 a R7, činí asi –3,5 V (měřeno mezi katodou a řídicí mřížkou). Synchronizační napětí pro časovou základnu je odebíráno z anodového obvodu elektronky E1 přes oddělovací kondenzátor C6 a tvarovací člen R8, C7.

Vstupní dělič, přes který se měřené napětí přivádí na zesilovač, je tvořen kromě odporových děličů i kondenzátory pro kompenzaci vlastností v oblasti vysokých kmitočtů.

Časová základna je osazena elektronkou E3 (EF80, příp. E180F) pracující jako tzv. fantastron. Toto zapojení (označované též jako Millerův tranzitron) umožňuje dosáhnout dostatečně lineárního pilového průběhu výstupního napětí časové základny s amplitudou kolem 100 V, což postačuje k vychýlení paprsku horizontálního vychylování přes celé stínítko obrazovky. Stručně popíšeme průběh činnosti tohoto typu generátoru pilového napětí podle *obr. 5.3.*

Předpokládejme, že na začátku děje je elektronka E uzavřena. Anodou potom neteče proud a napětí na anodě se rovná napětí zdroje. Přes potenciometr P v řídicí mřížce g1 se elektronka začne otevírat, takže na anodě poklesne napětí, toto jako záporný impulz projde kapacitou C_{ga} (kapacita řídicí mřížky proti anodě) na řidicí mřížku a působí proti vlivu kladného napětí. Tím se zastaví otevírání elektronky, záporný impulz zmizí a opět dojde k převážení kladného napětí z potenciometru. Tento děj se opakuje tak dlouho, až napětí na anodě klesne pod hodnotu napětí na

Obr. 5.3 Princip fantastronu (Millerova tranzitronu)

stínicí mřížce g2. Zvětší se proud I_{g2} na úkor proudu la a vzniklý pokles U_{g2} se projeví jako záporný impulz, který projde kondenzátorem C2 na brzdicí mřížku g3 a napomůže rychlému uzavření elektronky. Nyní se opět projeví vliv kladného napětí z potenciometru a děj se opakuje. Tzv. Millerův jev spočívá v tom, že přes anodový odpor Rn se nabíjí tzv. Millerova kapacita CM, což je kapacita řídicí mřížky proti anodě $C_{\rm ga}$ zvětšená o napěťové zesílení podle vztahu

$$CM = Cga (1 + AU)$$
 (5.1)

S přihlédnutím ke vztahům (2.1) a (2.2) lze odvodít

$$CM = Cga (1 + SRn)$$
 (5.2)

Prakticky lze tento vztah vyjádřit ve tvaru

$$CM = CgaSRn$$
 (5.3)

Je možno říci, že čím větší je zesilení elektronky, tím lze dosáhnout delší doby činného běhu a lineárnějšího průběhu.

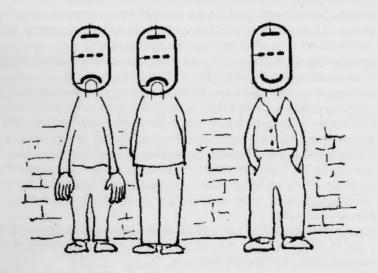
Fantastron lze synchronizovat kladnými impulzy do brzdicí mřížky g3. Toho je využito i v zapojení z *obr.* 5.2, kde je synchronizační napětí přiváděno na běžec potenciometru P6, kterým se nastavuje napěťová úroveň synchronizace časové základny.

Kmitočet časové základny lze měnit hrubě přepínačem, kterým zařazujeme různé hodnoty kondenzátorů, a jemně potenciometrem P7. Velikost výstupního napěti na horizontální vychylovací destičky lze nastavit potenciometrem P8. Napěťový impulz vznikající na stínicí mřížky g2 se využívá pro zhasínání paprsku obrazovky v době zpětného běhu (je přiveden na řídicí mřížku obrazovky).

Elektronka E3 může po přepnutí přepínače označeného ZESILOVAČ X rovněž pracovat jako zesilovač pro horizontální vychylování.

Síťový transformátor dodává potřebná napětí pro obvody osciloskopu: 2 × 250 V/30 mA a dvě nezávislá žhavicí napětí 6,3 V/1 A pro elektronky E1 až E3, resp. 6,3 V/1 A pro obrazovku E4. Usměrněné napětí je dosti vysoké (350 V), takže při práci je třeba dbát velké opatrnosti. Pro získání většího napětí pro obrazovku je použit další usměrňovač D5, takže celkové napětí mezi katodou a anodou obrazovky bude asi 700 V. Potenciometrem P3 se nastavuje proud obrazovkou ("jas"), potenciometrem P4 se nastavuje napětí na první anodě obrazovky, což umožňuje měnit ostrost stopy ("bod"). Potenciometr R26 slouží k nastavení optimálního pracovního bodu obrazovky.

Konstrukcí osciloskopu se zde nebude dále zabývat, případný zájemce ji nalezne v [L11]. Připomeňme, že obrazovku je nutno odstínit od vnějšího elektromagnetického pole vhodným krytem.


V popsaném příkladě osciloskopu je použita malá obrazovka s elektrostatickým vychylováním se stinítkem o průměru 70 mm typu 7QR20 (TESLA Rožnov). V současné době bude asi trošku problém tuto obrazovku sehnat, lze ji rovněž nahradit jiným typem s obdobnými parametry (DG 7-2, LB 8 apod.). V příloze je uveden katalogový list obrazovky 7QR20 včetně rozměrového náčrtu.

6 ZÁVĚR

V úvodu jsme se podivili nad jedním z výtvorů lidského umu – nad elektronkou. Po přečtení této knížky už snad mnozí z nás alespoň tuší, že jde opravdu o významnou historickou stopu v dějinách vývoje techniky. Možná, že někteří z nás se nechali inspirovat a postavili si elektronkový zesilovač a nyní se kochají jeho vlastnostmi, nebo bádají nad možnostmi jeho dalšího vylepšeni. Věřte nebo ne, je to cesta nekonečná.

Autoři

V Jablonci nad Nisou, březen 2004

LITERATURA A ODKAZY

Při sestavení této knížky bylo třeba znovu prolistovat několik zaprášených a téměř zapomenutých knih, protože tématika elektronek se za posledních třicet let z naší literatury vytratila. V poslední době se ale zdá, že podobně jako rostou vášně sběratelů historických aut, motocyklů, nábytku a jiných produktů své doby, ožívá opět i tématika elektronkových zařízení. Skalní fandové správného zvuku kytary nedají dopustit na svůj "lampáč". Laici i odborníci si mohou pořídit třeba i trochu snobsky vypadající zesilovač ve zlatém či stříbrném provedení, s cenou několikanásobně převyšující cenu běžného polovodičového zesilovače obdobných vlastností. Elektronka je zkrátka fenomén.

Seznam literatury obsahuje odkazy na použité tituly i na tituly k případnému dalšímu studiu. V žádném případě nemůže jít o vyčerpávající seznam. Velkou (a prakticky nevyčerpatelnou) studnicí informací jsou internetové stránky řady firem, klubů i soukromých osob. Je velmi nesnadné vybrat ty nejlepší nebo reprezentativní, zde je uveden malý výběr.

KNIHY A DALŠÍ PUBLIKACE

- [L1] Příruční katalog elektronek TESLA, 1973, 1976.
- [L2] Rádiotechnická príručka I., SVTL Bratislava 1965.
- [L3] Rádiotechnická príručka II., SVTL Bratislava 1966.
- [L4] Rádiotechnická príručka III., SVTL Bratislava 1967.
- [L5] W. W. Diefenbach: Příručka pro opravy přijímačů, SNTL Praha 1961.
- [L6] V. Černý, N. Čuchna, F. Michálek: Opravy rozhlasových přijímačů, SNTL Praha 1970.
- [L7] E. Kottek: Československé rozhlasové a televizní přijímače a zesilovače, díl III., SNTL Praha 1973.
- [L8] E. Kottek: Československé rozhlasové a televizní přijímače a zesilovače, díl IV., SNTL Praha 1985.
- [L9] A. Krejčiřík: Napájecí zdroje I., BEN Praha 1996.
- [L10] J. Pacák: Základy radiotechniky, ORBIS Praha 1947.
- [L11] G. Tauš: Osciloskop, SNTL Praha 1974.
- [L12] L. Havlík: Osciloskopy a jejich použití, Sdělovací technika Praha 2002.
- [L13] J. Lukeš: Věrný zvuk, SNTL Praha 1962.

ČLÁNKY V ČASOPISECH

- [C1] J. Vlach: Vacuum Tube Amplifier 40 W zesilovač s elektronkami, PE 3/1999.
- [C2] Simulátor kytarového zesilovače, AR 12/2000
- [C3] P. Meca: Hybridní výkonový zesilovač třídy A, AR 4/2001.
- [C4] J. Vlach: Hybridní koncový zesilovač HYBRID, PE 9/2001.
- [C5] B. Lipka: Lampy v rockové hudbě, PE 4 7/2002.
- [C6] K. Rochelt: Etektronkové zesilovače, PE 3/2000.
- [C7] K. Rochelt. High-End elektronkový předzesilovač EP 1, PE 8/2001.

INTERNETOVÉ ODKAZY

- [W1] www.kutloch.cz
 - stránky R. Duška, konstrukce zesilovačů a odkazy na množství jiných stránek;
- [W2] www.qmx.cz
 - konstrukce zesilovačů, zkušenosti z praxe;
- [W3] www.blatna.cz/tbp
 - výrobce transformátorů (TBP Blatná);
- [W4] sweb.cz/tube/iso8859/index.html
 - stránka o elektronkách, prodej a další informace (česky);
- [W5] www.jj-electronic.sk
 - oficiální stránka výrobce elektronek (JJ Electronic, Slovensko);
- [W6] www.elnika.sk
 - konstrukce elektronkových zesilovačů (Edgar, Slovensko);
 V době, kdy se kniha předávala do tisku, tato adresa nebyla funkční.
- [W7] www.mif.pg.qda.pl/homepages/tom/
 - stránky o elektronkových zesilovačích (polsky);
- [W8] www.radau5.ch
 - teorie o elektronkách a zesilovačích;
- [W9] digilander.iol.it/essentialaudio
 - hybridní zesilovač, stránky italského konstruktéra Generozza Cossy;
- [W10] www.thetubestore.com
 - katalogy elektronek, další odkazy;
 - V době, kdy se kniha předávala do tisku, tato adresa nebyla funkční.
- [W11] <u>www.qinko.de/user/franz.hamberger/roehren/roehren.html</u> nebo
 - www.qsl.net/dl7avf/roehren/roehren.html
 - katalogy elektronek;
- [W12] www.vacuumtube.com
 - elektronky, odkazy;
- [W13] www.tubes.ru
 - elektronky z ruské produkce;
- [W14] <u>www.svetlana.com/docs/tubeworks.html</u> – oficiální stránky ruského výrobce;
- [W15] home.wxs.nl/~frank.philipse/frank
 - stránky o elektronkách;

[W16] www.audiohot.com/Frank/index.html

- katalog elektronek;

V době, kdy se kniha předávala do tisku, tato adresa nebyla funkční.

[W17] www.wps.com/archives/tube-datasheets

katalogy elektronek;

[W18] www.triodeel.com/tubedata.htm

- odkazy na stránky o elektronkách;

[W19] www.asv-sebart.si

konstrukce zesilovačů (M. Šebart, Slovinsko);

[W20] www.westernelectric.com

výrobce elektronek (např. 300B);

[W21] users.starpower.net/je2a3/welcome.htm

- stránky J. E. Labs (Joseph Esmilla);

[W22] www.tubecad.com

internetový časopis o elektronkách;

[W23] www.radioslavia.cz

nebo

www.electron-tubes.cz

- TESLA Vršovice (vysílací elektronky);

[W24] www.fil.cz

- příklad firmy zabývající se výrobou transformátorů;

[W25] digilander.iol.it/teodorom/Theory/mu-follower.htm

teorie a přiklady µ-sledovače;

[W26] www.mujweb.cz/www/elektronky

 stránky Petra Svobody, sběratele historických přijímačů a lampového "šílence";

[W27] www.duncanamps.com

 anglická stránka o lampových zesilovačích pro kytaru s mnoha praktickými utilitami ke stažení (software);

[W28] www.ges.cz

 obchodní síť prodejen se součástkamí, která má v sortimentu komponenty pro výrobu elektronkových zesilovačů;

[W29] www.trafo.cz

firma Tronic, výrobce transformátorů

[W30] www.mcu.cz

 český "součástkový" internetový server, vydavatel DVD o elektronkách a zesilovačích

7

KATALOGOVÉ PŘÍLOHY

ZNAČENÍ ELEKTRONEK

Evropské značení (vč. starého značení TESLA)

Způsob značení elektronek byl v Evropě do značné míru sjednocen v roce 1935. Do té doby si každý výrobce zavedl a nadále používal souběžně své značení.

Příklady: EL34 - koncová pentoda, žhavicí napětí 6,3 V, patice oktal

E34L – koncová pentoda typu EL34 se zlepšenými vlastnostmi

6BC32 - trioda + dvojitá dioda, žhavicí napětí 6,3 V, patice heptal (TESLA)

1. znak (pismeno nebo číslo) - žhavení

	Žhavicí napětí	Źhavicí proud	Poznámka
Α	4 V		
В		180 mA ss	
С		200 mA	
D	1,2 nebo 1,4 V ss		tzv. bateriové žhavení
E	6,3 V		The state of the s
F	12,6 V		
G	5 V		
Н	4 V ss (starší)	150 mA	
1	20 V		
K	2 V ss		tzv. bateriové žhavení
L		450 mA	
0		150 mA	
Р		300 mA	
U		100 mA	
٧		50 mA	
Х		600 mA	
Υ		450 mA	
číslo	žhavicí napětí ve voltech		staré značení TESLA

2. (příp. další) písmeno – typ elektronky

	Popis	Poznámka
Α	dioda (mimo usměrňovací)	
В	dvojitá dioda (mimo usměrňovací)	tzv. duodioda
С	trioda (kromě koncové triody)	
D	koncová trioda	
E	tetroda (kromě koncové tetrody)	
F	pentoda (kromě koncové pentody)	
Н	hexoda nebo heptoda	
K	oktoda nebo pentagrid	
L	koncová pentoda nebo tetroda	
M	světelný indikátor	např. magické oko
N	tyratron	
Q	enneoda	
W	jednocestný plynový usměrňovač	staré značení TESLA
Х	dvojcestný plynový usměrňovač	
Υ	jednocestný vakuový usměrňovač	
Z	dvojcestný vakuový usměrňovač	3000

Skupina číslic – patice

	Typ patice	Poznámka
1 10	patice P	
11 15	patice T	
16 19	patice P	
20 29	patice loktal 1)	tzv. evropský oktal
30 39	patice oktal patice heptal ²)	tzv. americký oktal
40 49	patice rimlock patice noval ²)	
50 59	různé patice patice devítikolíková ²)	
60 79	různé patice	

	Typ patice	Poznámka
80 89	patice noval	
90 99	patice heptal	
180 189	patice noval	
200	patice dekal	
300	patice oktal	
500	patice magnoval	
800	patice noval	
900	patice heptal	

Poznámky:

- 1) mimo bateriové řady D21 a DF22
- 2) ien pro staré značení TESLA

Elektronky se zvláštními vlastnostmi, jako je např. dlouhá životnost, úzké tolerance parametrů nebo speciální odolnost systému proti otřesům nebo vibracím apod., jsou označeny zvlášť upraveným znakem, nebo doplněny písmenem S (např. E34L, E180F, E88CC, ECC803S apod.).

Ruské značení

Značení většiny elektronek vyráběných v bývalém SSSR a dodnes vyráběných v dnešní Ruské federaci (příp. i v dalších zemích) vycházelo z normy GOST 5461-59 z roku 1959. Bohužel ne u všech elektronek bylo toto značení striktně dodržováno.

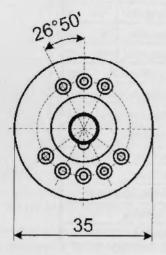
Příklady: 6П14П – koncová pentoda, žhavicí napětí 6,3 V, miniaturní provedení (ekv. EL84)

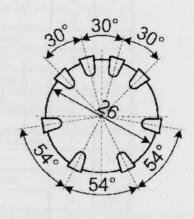
6X2Π – dvojitá dioda, žhavicí napětí 6,3 V, miniatumí provedení (ekv. EAA91)

6Ж9Π – strmá pentoda, žhavicí napětí 6,3 V, miniaturní provedení (ekv. E180F)

- číslo přibližné žhavicí napětí ve voltech
- 2. písmeno typ elektronky

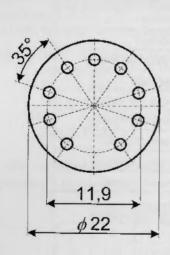
	Přepis	Popis
Д	D	dioda (mimo usměrňovací)
Х	СН	dvojitá dioda (mimo usměrňovací)
С	S	trioda (kromě koncové triody)
€	E	tetroda

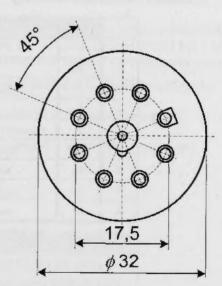

	Přepis	Popis	
П	Р	koncová pentoda nebo tetroda	
К	К	řízená pentoda	
ж	Ž	strmá pentoda	
В	V	pentoda se sekundámi emisí	
Α	Α	směšovací elektronka	
Б	В	pentoda s diodou (diodami)	
Г	G	trioda s diodou (diodami)	
E	JE	světelný indikátor	
И	1	trioda a hexoda, heptoda nebo oktoda	
Н	N	dvojitá trioda	
Р	R	dvojitá tetroda nebo pentoda	
Φ	F	trioda a pentoda	
Ц	С	usměrňovač	


3. číslo – rozlišení typu

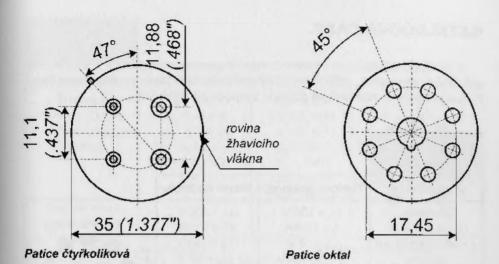
4. písmeno – konstrukce elektronky

	Přepis	Popis	
		kovová	
С	S	skleněná	
ж	Ž	vf skleněná, stranové vývody	
К	К	keramická	
П	Р	miniatumí skleněná (19 a 22,5 mm)	
Γ	G	subminiatumí (> 10 mm)	
Б	В	subminiaturní (10 mm)	
Р	R	subminiatumi (4 mm)	
Α	Α	subminiatumi (6 mm)	


Náčrty patic



Patice T

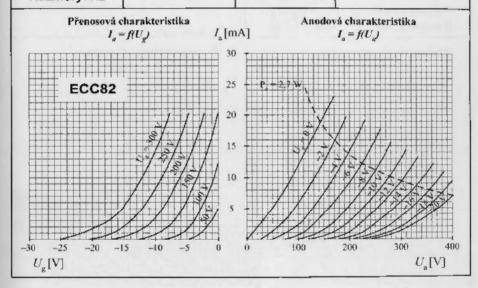

Patice P

Patice noval

Patice loktal

Převodní tabulka elektronek

V tabulce jsou uvedeny ekvivalenty některých běžně používaných elektronek.


Тур	Americké značení	Ruské značení	Ostatni
ECC81	12AT7		
ECC82	12AU7		6FQ7, 5814, 5963
ECC83	12AX7	6H2∏	7025
ECC832	12DW7		7247
ECC85	6AQ8		6L12
E88CC	6DJ8	6Н23П	6922
ECC99			III.
E180F			6688
EL34	6CA7		
EL84	6BQ5	6П14П	
ECL86	6GW8		
EZ81	6CA4		
GZ34	5AR4		
KT88			6550, RE 40 AK
PCL86	14GW8		
6L6 GC	6L6		KT66, 5881, 7027
300 B	300 B		SV300 B

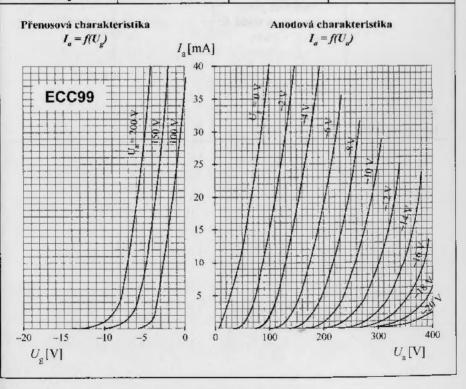
KATALOGOVÁ ČÁST

V katalogové části jsou uvedeny základní parametry některých v současnosti aktuálních elektronek, používaných především pro nízkofrekvenční zesilovače. Patice je značena zásadně při pohledu zespodu na elektronku.

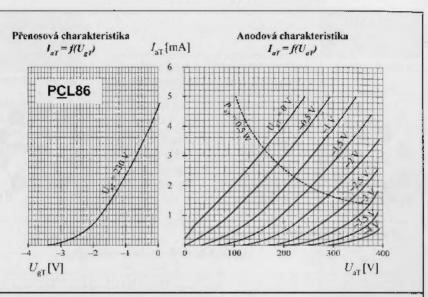
ECC81 12AT7				
vf dvojitá trioda	Typické hodnoty	Mezní hodnoty		
Žhavení: U _f = 6,3 V/12,6V I _f = 300 mA/150 mA nepřímě	$U_a = 250 \text{ V}$ $t_a = 10 \text{ mA}$ $U_g = -2 \text{ V}$ $S = 5.5 \text{ mA/V}$ $R_l = 11 \text{ k}\Omega$ $\mu = 60$	$U_{a} = 300 \text{ V}$ $P_{a} = 2,5 \text{ W}$ $U_{g} = -50 \text{ V}$ $U_{kf} = 90 \text{ V}$ $I_{k} = 15 \text{ mA}$ $R_{g} = 1 \text{ M}\Omega$		
Patice: noval Rozměry: N2			a" f _s	
Přenosová charak $I_a = f(U_g)$	teristika I _a [mA]		harakteristika = f(U _a)	
ECC81	25	1,-9		
	15			
	10			
-8 -6 -4	-2 0 0	100 20	0 300 400	
$U_{g}[V]$			$U_{\rm a}[{ m V}]$	

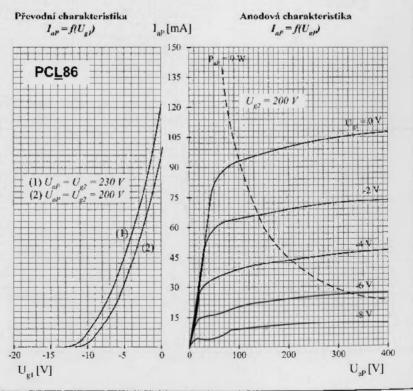
ECC82 12AU7			
nf dvojitá trioda	Typické hodnoty	Mezní hodnoty	
Žhavení: U ₁ = 6,3 V/12,6V I ₁ = 300 mA/150 mA nepřímé	$U_a = 250 \text{ V}$ $U_g = -8.5 \text{ V}$ $I_a = 10.5 \text{ mA}$ S = 2.2 mA/V $R_i = 7.7 \text{ k}\Omega$ $\mu = 17$	$U_a = 300 \text{ V}$ $P_a = 2,75 \text{ W}$ $I_k = 20 \text{ mA}$ $U_g = -50 \text{ V}$ $R_g = 1 \text{ M}\Omega$ $U_{k/f} = 180 \text{ V}$ $R_{k/f} = 150 \text{ k}\Omega$	k" 6 6 8' g'
Patice: noval Rozměry: N2		100000	$a'' f_s$

ECC83 12AX7, 7025			
vf dvojitá trioda	Typické hodnoty	Mezní hodnoty	
Žhaveni: U _f = 6,3 V/12,6V I _f = 300 mA/150 mA nepřímé	$U_a = 250 \text{ V}$ $U_g = -2 \text{ V}$ $I_a = 1.2 \text{ mA}$ S = 1.6 mA/V $R_i = 62.5 \text{ k}\Omega$ $\mu = 100$	$U_{\rm B}$ = 300 V $P_{\rm B}$ = 1 W $I_{\rm k}$ = 8 mA $U_{\rm g}$ = -50 V $R_{\rm g}$ = 2,2 M Ω $U_{\rm k/f}$ = 180 V $R_{\rm k/f}$ = 150 k Ω	
Patice: noval Rozměry: N2	Kapacity: $C_{g/k} = 1,6 \text{ pF}$ $C_8 = 0,33 \text{ pF}$ $C_{g/a} = 1,7 \text{ pF}$		a" f _s
Přenosová charakt $I_a = f(U_g)$	eristika $I_{ m a}[{ m mA}]$		arakteristika f(U _d)
ECC83	5 -	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	/
	// 4 + 1 // 3 +		
ž			
-4 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3	2 -1 0 0	100 200	300 400 U _a [V]

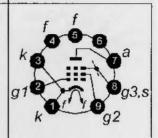

ECC832 12DW7			
Kombinovaná dvojitá trioda pro speciální použití	Typické hodnoty	Mezni hodnoty	
Žhavení: <i>U</i> _f = 6,3 V/12,6V <i>I</i> _f = 300 mA/150 mA nepřímé	Systém I (koliky 6, 7, 8): $U_a = 250 \text{ V}$ $U_g = -2 \text{ V}$ $I_a = 1,2 \text{ mA}$ S = 1,6 mA/V	Systém I (koliky 6, 7, 8): viz hodnoty ECC83 Systém II	k" 6 1 1 0
	$R_i = 62.5 \text{ k}\Omega$ $\mu = 100$	(kolíky 1, 2, 3): viz hodnoty ECC82	
	Systém II (koliky 1, 2, 3): <i>U</i> _a = 250 V		
	$U_g = -8.5 \text{ V}$ $I_a = 10.5 \text{ mA}$ S = 2.2 mA/V		
Patice: noval Rozměry: N2	$R_i = 7.7 \text{ k}\Omega$ $\mu = 17$		

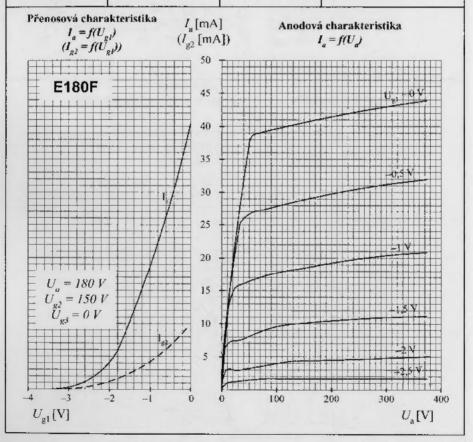
ECC85 6AQ8		
vf dvojitá trioda	Typické hodnoty	Mezni hodnoty
Žhavení: U _I = 6,3 V I _I = 380 mA nepřímė	$U_{a} = 250 \text{ V}$ $U_{g} = -2.3 \text{ V}$ $I_{a} = 10 \text{ mA}$ S = 5.9 mA/V $R_{i} = 9.7 \text{ k}\Omega$ $\mu = 57$	$U_a = 300 \text{ V}$ $P_a = 2.5 \text{ W}$ $I_k = 15 \text{ mA}$ $U_g = -100 \text{ V}$ $R_g = 1 \text{ M}\Omega$ $U_{kf} = 90 \text{ V}$
Patice: noval Rozměry: N2		

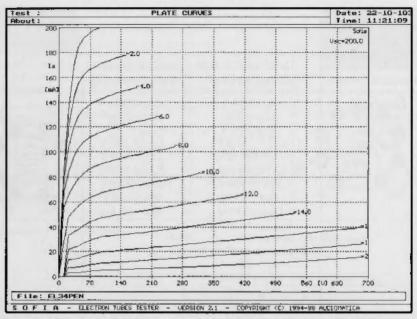

	ECC88
	E88CC
	6DJ8,
	6922
_	


vf dvojitá trioda	Typické hodnoty	Mezní hodnoty	
Žhavení:	Ua = 90 V	U _{a0} = 550 V	f
$U_{\rm f} = 6.3 \rm V$	$U_{q} = -1.3 \text{ V}$	U _{a(le=0)} = 400 V	f a a'
$I_1 = 365 \text{ mA}$	I _a = 15 mA	U _a = 220 V	0.00
nepřímé	S = 12,5 mA/V	$U_a(P_{ar}<0.8W) = 250 \text{ V}$	$k'' \circ / \bot : \bot \circ g$
	$R_i = 2.6 \text{ k}\Omega$	$P_{aR} = 1.5 \text{ W}$	[X]
	μ = 33	$P_{g1R} = 0.03 \text{ W}$ $I_k = 20 \text{ mA}$	g"2 R'
	Kapacity:	$U_{\rm g} = -100 \text{ V}$	a" s
	$C_{9/k} = 3.1 \text{ pF}$	$R_{\rm g} = 1 \rm M\Omega$	
	$C_0 = 0.18 \text{ pF}$	U+k/f- = 120 V	
Patice: noval	$C_{g/a} = 1.4 \text{ pF}$	U _{-k/f+} = 60 V	
Rozměrv: N2		$R_{k\pi} = 20 \text{ k}\Omega$	

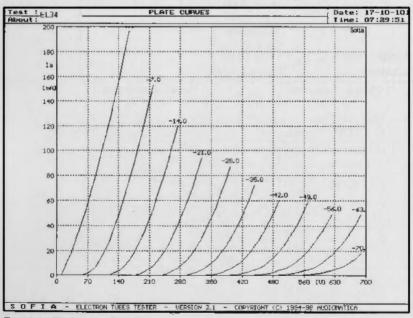
ECC99			
vf dvojitá koncová trioda	Typické hodnoty	Mezní hodnoty	
Žhavení: U _f = 6,3 V/12,6 V I _t = 0,8 A/0,4 A nepřímė Doporučené použiti: Budič výkonových triod (300B, 2A3 apod.), výkonový stupeň nf zesilovačů. Lze použit misto 5687, E182CC, 6840 a 6BL7.	$U_{a} = 150 \text{ V}$ $U_{g} = -4 \text{ V}$ $I_{a} = 18 \text{ mA}$ $S = 9.5 \text{ mA/V}$ $R_{i} = 2.3 \text{ k}\Omega$ $\mu = 22$ Kapacity: $C_{g/k} = 5.8 \text{ pF}$ $C_{a} = 0.91 \text{ pF}$ $C_{g/a} = 5.1 \text{ pF}$	$U_a = 400 \text{ V}$ $P_a = 5 \text{ W}$ $I_k = 60 \text{ mA}$ $U_{kN} = 200 \text{ V}$	
Patice: noval Rozměry: N3		10/10	

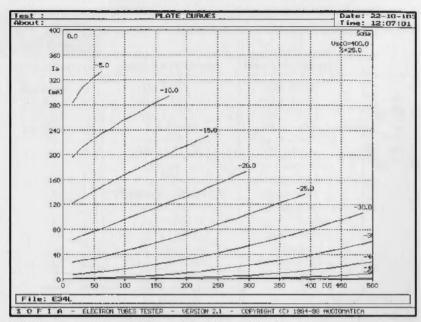

PCL86		
nf trioda a pentoda	Typické hodnoty	Mezní hodnoty
Žhavení:	Trioda:	Trioda:
$I_{\rm f} = 0.3 {\rm A}$	U _a = 230 V	U _{aQ} = 550 V
U ₁ = 14,5 V	$U_{\rm q} = -1.7 \text{ V}$	U _a = 250 V
nepřímé	l _a = 1,2 mA	P _a = 0,5 W
	S = 1,6 mA/V	$J_k = 4 \text{ mA}$
ECL86	μ = 100	U _{k/f} = 100 V
$U_{\rm f} = 6.3 {\rm V}$	Pentoda:	Pentoda:
If = 0,7 A	U _a = 230 V	U _{aO} = 550 V
nepřímé	$U_{g1} = -5.7 \text{ V}$	U _a = 250 V
	$U_{g2} = 230 \text{ V}$	Pa = 9 W
	$I_{\rm a} = 39 {\rm mA}$	U _{g20} = 550 V
	S = 10,5 mA/V	$U_{g2} = 250 \text{ V}$
	$R_i = 45 \text{ k}\Omega$	$I_{\rm k} = 55 {\rm mA}$
	$\mu_{g2/g1} = 100$	U _{k/f} = 100 V
	Pentoda jako	
	zesilovač ve třídě A:	
	U _e = 230 V	
	$U_{g2} = 230 \text{ V}$	1000
	$R_k = 115 \Omega$	
	I _a = 42 mA	
	$I_{g2} = 11,4 \text{ mA}$	
Patice: noval	$R_a = 5.1 \text{ k}\Omega$	The second second
Rozměry: N4	$P_{\rm O}$ = 4 W	

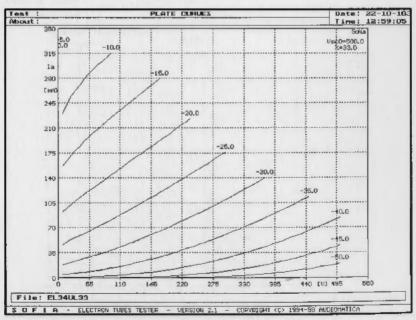


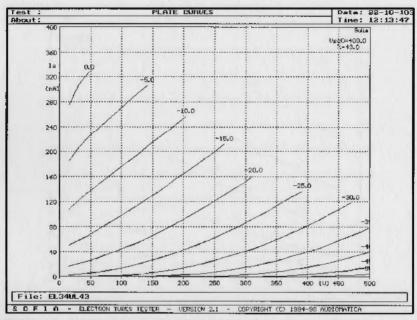

E	1	8	01	F
6	if	88	8	

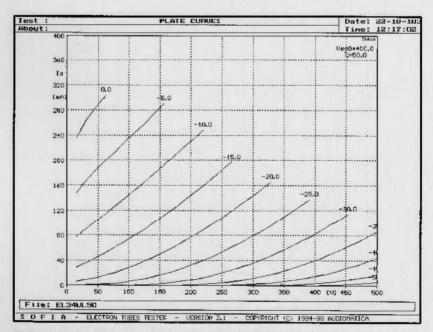
vf strmá pentoda	Typické hodnoty	Mezní hodnoty
Žhaveni:	U _a = 190 V	U _{e0} = 400 V
$U_{\rm f} = 6.3 \rm V$	$U_{g3} = 0 \text{ V}$	U _a = 210 V
$I_{\rm f} = 300 {\rm mA}$	$U_{g2} = 160 \text{ V}$	$P_a = 3 W$
nepřímé	$U_{g1} = +9 \text{ V}$	$U_{g2} = 175 \text{ V}$
	I _a = 13 mA	$-U_{g1} = 50 \text{ V}$
	$R_k = 630 \Omega$	$I_{k} = 25 \text{ mA}$
Patice: noval	S = 16,5 mA/V	$R_{\rm g1}$ = 0,25 M Ω
Rozměry: N1	$R_i = 90 \text{ k}\Omega$	




EL34 E34L 6CA7				
nf výkonová pentoda	Typické h	odnoty	Mezní hodnoty	
Žhavení: U _I = 6,3 V I _f = 1,5 A nepřímé Patice: oktal Rozměry: O2	$U_a = 25$ $U_{g3} = 6$ $U_{g2} = 26$ $U_{g1} = -1$ $I_a = 100$ $I_{g2} = 14$, $S = 11$ r $R_1 = 15$ $U_{g2/g1} = -1$ I_{g2} ($U_{g1} = -1$ I_{g2} ($U_{g1} = -1$ I_{g2} ($U_{g2} = 1$ I_{g2} (U_{g2} ($U_{$	0 V 85 V 3,5 V 0 mA 9 mA mA/V 6 kΩ 11 V -30 V) nA 6 třidě A : 65 V 50 V 0 V 2 kΩ mA kΩ MA kΩ ity: ,5 pF	$U_{a0} = 2000 \text{ V}$ $U_{a} = 800 \text{ V}$ $V_{a} = 800 \text{ V}$ $V_{g20} = 800 \text{ V}$ $V_{g2} = 450 \text{ V}$	g2 g1 a 3 6 f 2 7 f
Pfenosová chara $I_a = f(U_g)$ EL34 (1) $U_o = 250 V$ $U_{g2} = 259 V$ $U_{g3} = 0 V$ (2) $U_g = 350 V$ $U_{g3} = 375 V$ $U_{g3} = 0 V$ (3) $U_o = 400 V$ $U_{g3} = 425 V$ $U_{g3} = 0 V$	400 350 300 250 (1) (1) 200 (50 50	And	odová charakteristika $I_a = f(U_d)$ SW $V_d = \delta X$	2-250 V 03-0 V 10-10 V 10-1


Zapojení EL 34 jako PENTODA (diagramy poskytnuty firmou JJ Electronic)


Zapojeni EL 34 jako TRIODA


EL34 v ultralineárním zapojení s odbočkou na 25 %

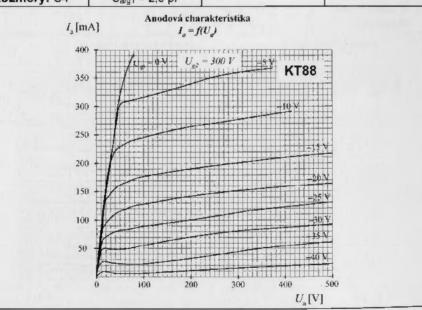
EL34 v ultralineárním zapojení s odbočkou na 33 %

EL34 v ultralineárním zapojení s odbočkou na 43 %

EL34 v ultralineárním zapojení s odbočkou na 50 %

EL84 6BQ5			
vf výkonová pentoda	Typické hodnoty	Mezní hodnoty	
Žhavení: U _f = 6,3 V I _f = 1,5 A nepřímé Patice: noval	$U_{a} = 250 \text{ V}$ $U_{g2} = 250 \text{ V}$ $U_{g1} = -7.3 \text{ V}$ $I_{a} = 48 \text{ mA}$ $I_{g2} = 5.5 \text{ mA}$ $S = 11.3 \text{ mA/V}$ $R_{i} = 40 \text{ k}\Omega$ $\mu_{g1/g2} = 19$ Zesilovač ve třídě A: $U_{a} = 250 \text{ V}$ $U_{g2} = 250 \text{ V}$ $R_{k} = 135 \Omega$ $I_{a} = 49.5 \text{ mA}$ $I_{g2} = 10.8 \text{ mA}$ $I_{g3} = 10.8 \text{ mA}$ $I_{g4} = 10.8 \text{ mA}$ $I_{g5} = 10.8 \text{ mA}$ $I_{g6} = 10.8 \text{ mA}$	$U_{a}=300 \text{ V}$ $P_{a}=12 \text{ W}$ $U_{g2}=300 \text{ V}$ $P_{g2}=2 \text{ W}$ $U_{g1}=-100 \text{ V}$ $I_{k}=65 \text{ mA}$ $R_{g1}=1 \text{ M}\Omega$ pro automaticky nastavené předpětí U_{g1} $R_{g1}=0,3 \text{ M}\Omega$ pro pevně nastavené předpětí U_{g1} $I_{g1}=0$ $I_{g1}=0$ $I_{g2}=0$ $I_{g3}=0$ $I_{g4}=0$	g1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Rozměry: N4	$C_{g1/f} = 0.15 \text{ pF}$		
	harakteristika $f(U_g)$ I_a [mA]	Anodová charakteristit $I_a = f(U_a)$	CD.
	200 180 180 160 140 1250 V 120 120 100 110 100 110 40 40 20	12 W 10 0 V 12	50 V

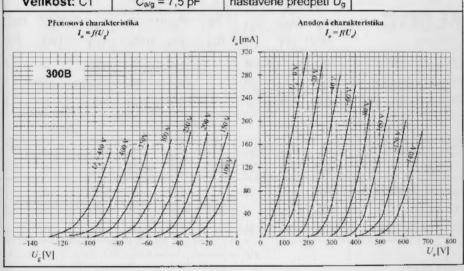
 $U_{\mathrm{gl}}[V]$


 $U_{\mathbf{a}}[V]$

EZ81 6CA4		
dvoucestný usměrňovač	Typické hodnoty	Mezní hodnoty
Žhavení: U _f = 6,3 V U _f = 1 A nepřímé	$U_{a \text{ ef}} = 2 \times 350 \text{ V}$ $R_{O} = 2 \times 240 \Omega$ $R_{Z} = 2.3 \text{ k}\Omega$ $C_{N} = 50 \text{ µF}$ $I_{O} > 134 \text{ mA}$ $I_{D} = 110 \text{ mA}$	$-U_a = 1000 \text{ V}$ $U_{a \text{ ef}} = 2 \times 350 \text{ V}$ $I_0 = 150 \text{ mA}$ $I_a = 450 \text{ mA}$ $U_{kff} = 500 \text{ V}$
Patice: noval Rozměry: N4		

GZ34 5AR4			
dvoucestný usměrňovač	Typické hodnoty	Mezni hodnoty	
Žhavení: U _f = 5 V I _f = 1,9 A nepřimé Patice: oktal Rozměry: O1	Kapacitní zátěž (f = 50 Hz): $U_{a \text{ ef}}$ = 2 × 300 V R_{O} = 2 × 75 Ω C_{N} = 60 μ F I_{D} = 250 mA Indukční zátěž (f = 50 Hz): $U_{a \text{ ef}}$ = 2 × 300 V R_{O} = 0 L = 10 H I_{D} = 250 mA	Kapacitní zátěž (f = 50 Hz): $-U_0$ = 1500 V I_0 = 750 mA C = 60 μF U_0 = 2 × 300 2 × 550 V I_0 = 250 160 mA I_0 = 2 × 50 2 × 75 Ω Indukční zátěž (f = 50 Hz): $-U_0$ = 1500 V I_0 = 750 mA I_0 = 2 × 500 2 × 550 V I_0 = 250 225 mA	9' 9 8 8 F, k

K	TE	18
6	55	0


f výkonová pentoda	Typické hodnoty	Mezní hodnoty	
Žhavení:	U _a = 250 V	U _a = 800 V	
U _f = 6,3 V	$U_{q2} = 250 \text{ V}$	$U_{92} = 600 \text{ V}$	g2 g
$I_{\rm f} = 1.6 {\rm A}$	I _a = 140 mA	$U_{a, g2} = 600 \text{ V}$	9
nepřímé	$I_{02} = 7 \text{ mA}$	-U ₀₁ = 200 V	a 4 1
	$U_{g1} = -15 \text{ V}$	Pa = 42 W	
	S = 11,5 mA/V	$P_{92} = 8 \text{ W}$	1000
	$R_i = 12 \text{ k}\Omega$	$P_{a-g2} = 46 \text{ W}$	0.8
	µ ₋₉₁₋₉₂ = 8	$I_{\rm k}$ = 230 mA	k,g.
	Jako trioda:	$U_{k/f} = 250 \text{ V}$	
	U _{a,g2} = 250 V	R _{g1-k} (předpětí	
	$I_{a+g2} = 147 \text{ mA}$	z katody)	
	$U_{g1} = -15 \text{ V}$	P _{a+g2} ≤ 35W 470 kΩ	
	S = 12 mA/V	$P_{a+g2} > 35W 270 \text{ k}\Omega$	
	$R_i = 670 \Omega$	R _{g1-k} (pevně	
	μ = 8	nastavené předpětí)	
	Kapacity:	$P_{\text{a+g2}} \le 35\text{W} 220 \text{ k}\Omega$	
	$C_{g1} = 16,5 \text{ pF}$	P_{a+g2} >35W 100 kΩ	
Patice: oktal	C _e = 10 pF		
Rozměry: 04	$C_{a/g1} = 2.3 \text{ pF}$		

6	L	6	G	C	3
	5	8	8	1	

5881			
nf svazková pentoda	Typické hodnoty	Mezní hodnoty	
Žhaveni: U _f = 6,3 V I _f = 0,9 A nepřímé	Jednočinný stupeň ve třídě A1: $U_a = 250 \text{ V}$ $U_{g2} = 250 \text{ V}$ $U_{g1} = -14 \text{ V}$ $I_a = 72 \text{ mA}$ $I_{g2} = 5 \text{ mA}$ $R_a = 22,5 \text{ k}\Omega$ $P_0 = 6,5 \text{ W}$ Dvojčinný stupeň: $U_a = 270 \text{ V}$ $U_{g1} = -17,5 \text{ V}$ $I_a = 134 \text{ mA}$ $I_{g2} = 11 \text{ mA}$ $R_a = 5 \text{ k}\Omega$ $P_0 = 17,5 \text{ W}$ Kapacity:	Trioda Pentoda $U_a = 450 \lor 500 \lor$ $U_{g2} = 450 \lor 450 \lor$ $P_a = 30 \lor 30 \lor$ $R_{g1} = 0.1 MΩ$ pro pevně nastavené předpětí U_{g1} $R_{g1} = 0.5 MΩ$ pro automaticky nastavené předpětí U_{g1}	g2 g1 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
Patice: oktal	$C_{g1} = 12.5 \text{ pF}$ $C_{a} = 10 \text{ pF}$		0
Rozměry: 03	$C_{a/g1} = 1.5 \text{ pF}$		
Přenosová charakt $I_s = f(U_s)$	eristika /a[mA]	Amodová charakteristika $I_{\pi} = f(U_{\pi})$	
6L6	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		

300 B			
vf trioda pro zesilovače třídy A	Typické hodnoty	Mezní hodnoty	
Žhavení:	U _a = 300 V	U _a = 450 V	
U _f = 5 V	U _g = −61 V	$P_{\rm a} = 40 {\rm W}$	a
I _f = 1,3 A	$I_{\rm a} = 60 {\rm mA}$	$I_a = 70 \text{ mA}$	1 / 1 7
přímé	R _i = 700 Ω	pro pevně nastavené	/
	$\mu = 3.85$	předpětí U ₉	f,k
	Kapacity:	/ _a = 100 mA	
	$C_g = 17 \text{ pF}$	pro ručně nebo	
Patice: 4-koliková	C _a = 11 pF	automaticky	
Velikost: C1	$C_{a/g} = 7.5 \text{ pF}$	nastavené předpětí Ug	

POROVNÁNÍ ZKRESLENÍ A VÝKONU NA DRUHU ZAPOJENÍ A POUŽITÝCH ELEKTRONEK

(získáno z JJ Electronic)

LITOO	7.1								
KT88	$U_{\rm a}$	$U_{\rm g2}$	U_{g1}	R_{k}	R_{g2}	l _a	R _{a-a}	Pout	THD
zapojení	[V]	[V]	[V]	[Ω]	$[\Omega]$	[mA]	$[\Omega]$	[W]	[%]
SE A TRIODE FB	420		-46		100	75	4500	8,5	6
PP AB1 UL FB	450	40%	-53		á 470	2×50	4000	65	2
PP AB1 PENT FB	550	300	-36		1	2×60	4500	90	3
6L6GC	Ua	U _{g2}	U _{g1}	R _k	R _{g2}	la	R _{a-a}	Pout	THD
zapojení	[V]	[V]	[V]	$[\Omega]$	$[\Omega]$	[mA]	$[\Omega]$	[W]	[%]
SE A TRIODE FB	400		-34		100	70	3700	8	5
PP AB1 TRIODE FB	400		-43			2×48	4500	12	3
PP AB1 PENT FB	450	400	-37		á 470	2×58	5600	55	2
EL34	$\overline{U_a}$	U _{g2}	U _{g1}	Rk	R _{g2}	l _a	R _{a-a}	Pout	THD
zapojení	[V]	[V]	[V]	$[\Omega]$	$[\Omega]$	[mA]	$[\Omega]$	[W]	[%]
SE A TRIODE FB	440		-39		100	50	6000	8	5
PP AB1 UL CB	430	40%		á 470	á 1000	2×62	6000	35	1
PP B PENT FB	470	400	-36		750	2×30	4000	70	5
300B	$\overline{U_{\rm a}}$	U _{g2}	U _{g1}	Rk	R _{g2}	la	R _{a-a}	Pout	THD
zapojení	[V]	[V]	[V]	[Ω]	$[\Omega]$	[mA]	$[\Omega]$	[W]	[%]
SE A FB	375	_	_	_	_	75	3800	8	2

Vysvětlivky:

PPAFB

SE ... Single Ended, jednočinné zapojení

375

PP ... Push-Pull, dvojčinné zapojení

UL ... Ultra Linear

R_k, R_{G2} a každá lampa zvlášť

FB ... Fixed bias CB ... Catode bias

2×85

4000

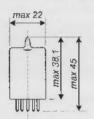
20

2

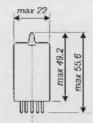
-68

7QR20			
Osciloskopická obrazovka s elektrostatickým nesymetrickým vychylováním a ostřením bodu, stinítko zeleně.	Typické hodnoty	Mezní hodnoty	
Žhavení: U _f = 6,3 V I _f = 0,6 A nepřímé Patice: loktal Rozměry: výkresy	U _{a2} = 500 V U _{a1} = 120 V U _g = -25 V *) S _{D1/D2} = 0,44 mm/V **) S _{D3/D4} = 0,4 mm/V *) citlivost vychylovacích destiček bližších katodě **) citlivost vychylovacích destiček bližších stínítku	U_{e2} = 1000 V U_{a1} = 500 V U_{g} = 0 V ***) $E_{D/D}$ = 500 V I_{k} = 50 mA R_{g} = 1,5 M Ω ***) špičkové napěti mezi destičkami	D4,a2 D2 D3
989			\$ 70
		52,5	•
	167		

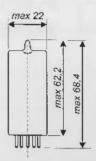
Seznam použitých symbolů

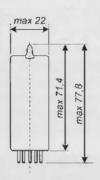

 U_a napětí na anodě napětí na anodě v klidu (při $I_A = 0$ mA) Unn U žhavicí napětí U_{α} napětí na mřížce max. napětí mezi katodou a žhavicím vláknem Ukff U_{a ef} efektivní hodnota anodového napětí anodový proud 12 proud stínicí mřížky I_{a2} katodový proud 1, žhavicí proud 14 usměrněný proud 10 anodový proud diody In anodový zatěžovací odpor Ra R_{i} vnitřní odpor Rk katodový odpor RUK vnější odpor mezi katodou a žhavicím vláknem R_{a} mřížkový odpor omezovací odpor v anodovém obvodě RO R7 zatěžovací odpor C_{a} vstupní kapacita Ca výstupní kapacita Cala průchozí kapacita kapacita řídicí mřížky vůči vláknu $C_{al/f}$ C_N kapacita nabíjejícího kondenzátoru filtru S strmost μ zesilovací činitel zesilovací činitel stínicí mřížky (g2) Pa2/a1 Pa anodová ztráta Pa2 ztráta stínici mřižky

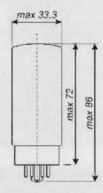
Po

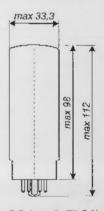

výstupní výkon

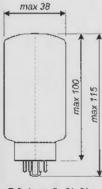
Rozměry elektronek

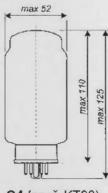

Typické rozměry elektronek.

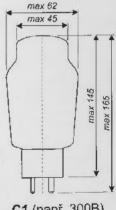

N1 (např. E180F) Patice noval


N2 (např. ECC88) Patice noval


N3 (např. ECC99) Patice noval


N4 (např. EL84) Patice noval


O1 (např. GZ34) Patice oktal

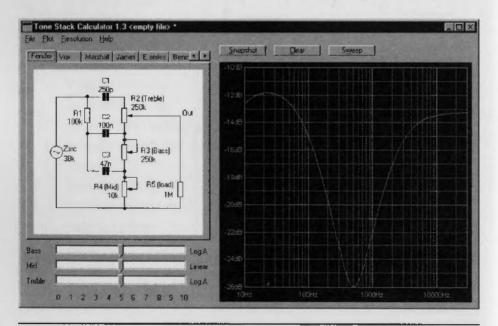

O2 (např. EL34) Patice oktal

O3 (např. 6L6) Patice oktal

O4 (např. KT88) Patice oktal

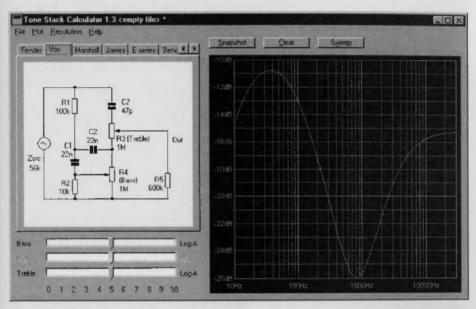
C1 (např. 300B) Patice čtyřkolíková

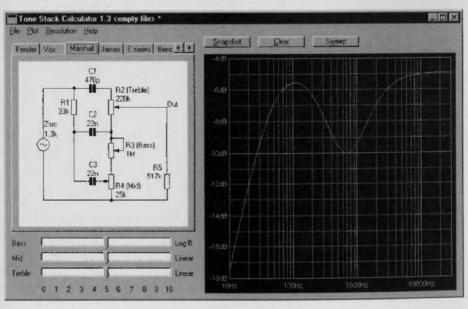
Program TONE STACK CALCULATOR 1.3

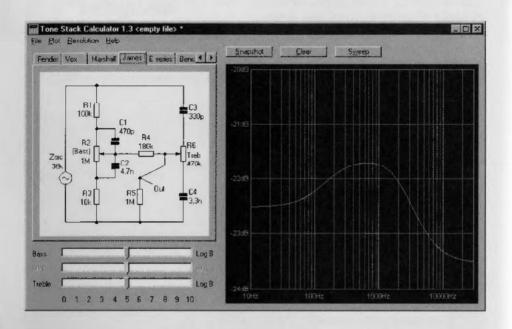

Při tvorbě knihy mě Filip Robovský (viz rozhovor s nim) upozomil na zajímavý a především praktický program, který leckterému konstruktérovi může podstatně ulehčit život. Abychom demonstrovali čtenářům jeho použítelnost, rozhodli jsme se na závěr této knihy umístit pár "printscreenů" s drobným popisem programu.

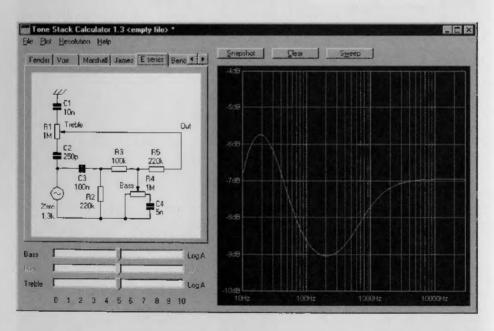
Program naleznete na www stránce http://www.duncanamps.com/tsc.

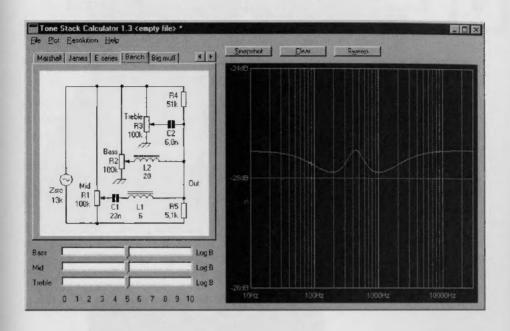
Má však přísně vymezená autorská práva – Ize jej používat pouze pro amatérské účely, nesmí se umisťovat na jakékoliv další www stránky, ani na různá CD. Instalační soubor tsc_setup.exe, který si stáhnete z www má velikost pouhých 724 kB. Instalace je velmi rychlá a hlavně bezproblémová. Bezprostředně po ní se samotný program ihned spustí.

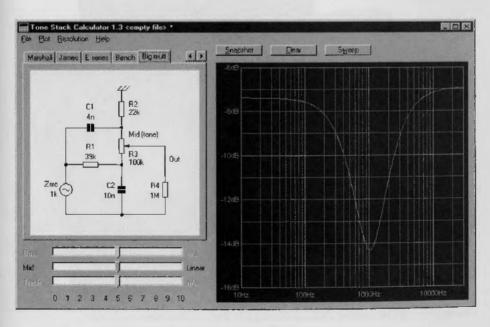

Z důvodu lepšího vykreslení charakteristik doporučuji nastavit v menu položku Resolution -> Auto Y scale. Charakteristika má pak patrnější tvar.

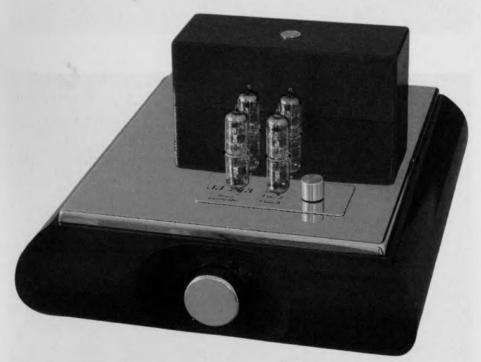

Práce s programem je velmi jednoduchá. Vyberete si záložku se zapojením a schéma si modifikujete tím, že vždy poklepete myší na prvek ve schématu a do dialogového okna vložíte vlastní hodnotu prvku (kapacitu nebo odpor). Charakteristika se překreslí okamžitě po "odentrování", takže ihned vidíte co jste "spáchali". Ve spodní části vlevo jsou virtuální potenciometry (je u nich dokonce uvedeno, zda se jedná o lineámí nebo logaritmické), které simulují ty ve schématu. S nimi si



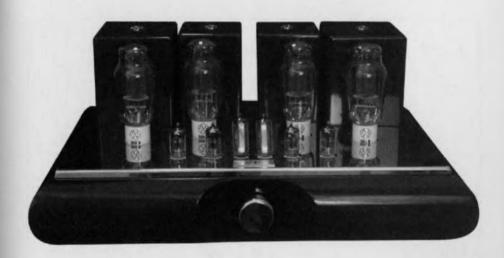

můžete hýbnout, abyste na charakteristice viděli, kam až vám korektor "polezete". Výsledky si samozřejmě můžete ukládat.


Další komentář k programu není potřeba. Uvedené obrázky názorně dokumentují snadnost a pohodovost při použití programu.



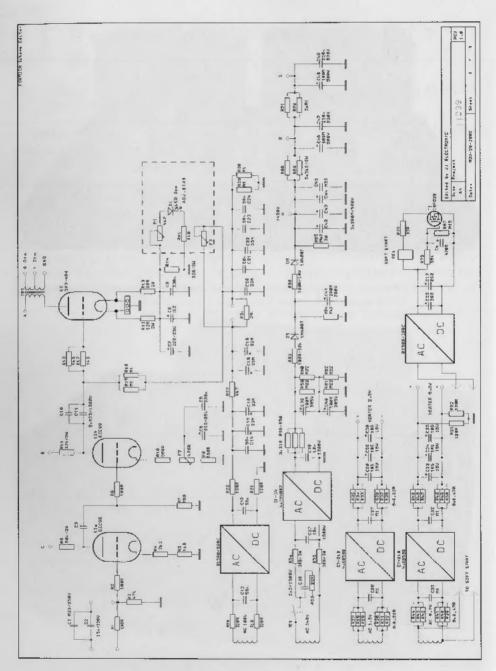

Kvalitní elektronkové zesilovače firmy JJ ELECTRONIC

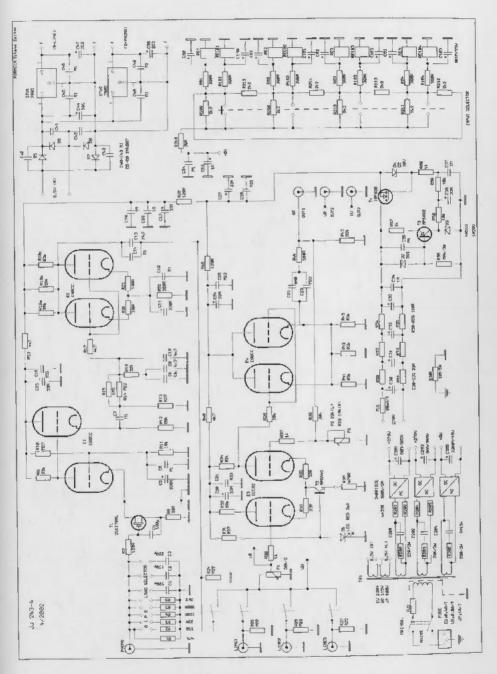
Po mé návštěvě firmy JJ Electronic mi vedoucí vývoje zesilovačů povolil, že můžeme v této knize zveřejnit schémata jejich elektronkových zesilovačů.

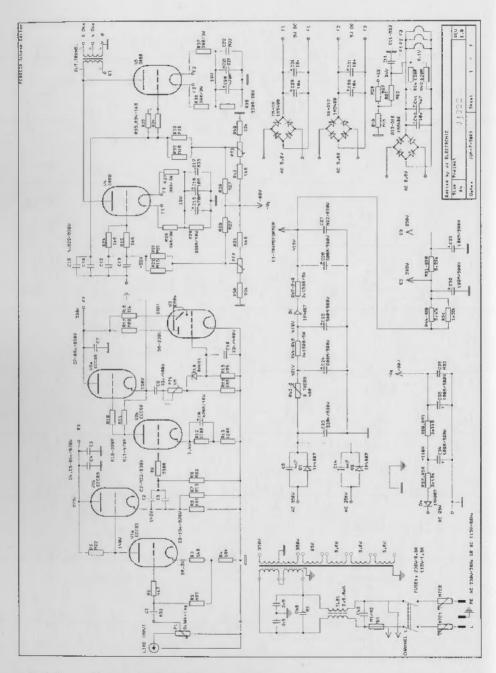

Věřím, že pro mnoho čtenářů budou tato zapojení vhodnou inspirací při vývoji vlastních zapojení. Při stavbě vlastních zesílovačů si buďte vědomi toho, že vliv na výslednou kvalitu zesílovače má nejen zapojení, ale také kvalita použitých součástek a dílů.

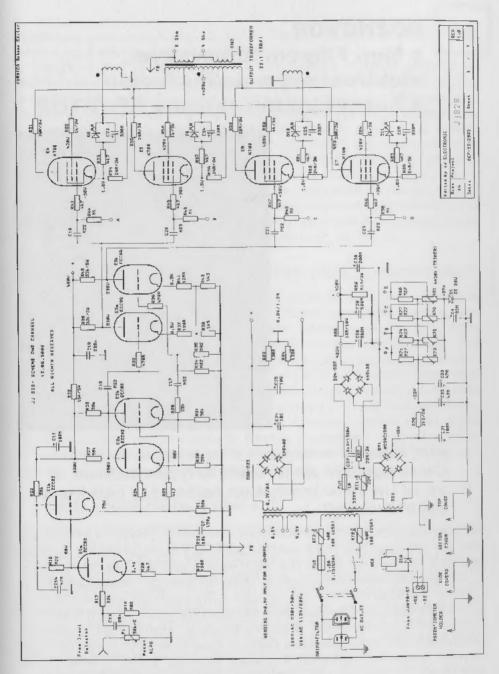
Jenom připomínám, že na schémata se vztahují autorská práva, tj. nesmíte např. vyrábět za účelem zisku zesilovač shodného zapojení (pro vlastní potřebu si shodný zesilovač však vyrobit můžete), dále nesmíte bez souhlasu JJ Electronic zveřejnit tato schémata na Internetu nebo kdekoli jinde apod.

Prosím tedy za naše nakladatelství, dodržujte autorská práva a nezneužívejte laskavosti firem, se kterými spolupracujeme, To, že nám povolili tato schémata zde zveřejnit, ještě neznamená, že si s nimi může každý dělat co chce. Děkuji.


Obr. 9.1 Elektronkový předzesilovač JJ 243 od JJ Electronic.
Osazení: vstupy 4× E88CC, koncový zesilovač 2 × ECC82 a 2 × E88CC.


Obr. 9.2 Zesilovač JJ 322 je navržen jako pár monobloků majicí společnou výstupní zem a společný regulátor výstupního výkonu 20 + 20 W.
Osazení: vstup 2 × ECC83, 2 × ECC88 a 2 × EM84, koncový zesilovač 4 × 300B.


Obr. 9.3 Zesilovač JJ 828 pracující ve třidě AB s dálkovým ovládáním. Výstupní zesilovač zajišťuje výkon minimálně 50 W (typ. 70 W) na kanál. Osazení: vstup 4 × ECC82 a 2 × ECC99, koncový zesilovač 8 × KT88.


Obr. 9.4 Schéma zapojení monofonního zesilovače JJ 239 o výkonu 40 W.

Obr. 9.5 Schéma zapojení předzesilovače JJ 243.

Obr. 9.6 Schéma zapojení zesilovače JJ 322.

Obr. 9.7 Schéma zapojení zesilovače JJ 828.

10

ROZHOVOR s Mgr. Filipem Robovským, elektronkovým enthuziastou a baskytaristou skupiny KRYPTOR

Ahoj Filipe, po delším čase se opět vidíme na území České republiky. Jak je možné, že ty jako hudebník, si se dal i na dráhu konstruktéra zesilovačů a ještě k tomu elektronkových?

Na svých cestách po různých světových nahrávacích studiích a zkušebnách jsem byl překvapen, jak velké množství zesilovačů a dalších doplňků zvukové aparatury vyrobených na míru či modifikovaných dle přání zákazníka (custom made nebo customized) tam používají. Majitelé a dokonce i zaměstnanci těchto studií a zkušeben mi nezávisle na sobě potvrzovali fakt, že z průmyslově vyráběných aparatur, pouze pár firem splňuje u svých audio výrobků kvalitativní nároky pro studiové využítí. Skoro každé studio spolupracuje s vlastními servismeny. Tito servismeni vedle běžných oprav a nastavování zařízení také navrhují a konstruují aparatury a doplňky dle potřeb studia. V dnešní době digitálního záznamu a zpracování zvuku mají plné ruce práce s výrobou elektronkových doplňků (preampy, ekvalizéry, kompresory), aby dodali

digitálnímu procesu tu nezbytnou teplou barvu zvuku, kterou vlastně máme nějak v sobě zakódovanou jako přirozenou.

Paralelně jsem se začal zajímat i o problematiku High-End aparatur pro domácí poslech. I když jsou ceny pěti- a vícemístné, tito lidé, kteří navrhují a vyrábějí vysoce jakostní aparatury pro domácí poslech, neustále posouvají hranice v kvalitě elektronkových zesilovačů. Oni se snaží nebýt limitování nedostupností kvalitních materiálů a součástek. Protože používají ty nejlepší součástky a materiály, co se dnes ve světě dají sehnat, tak poslouchat jejich zesilovače je opravdu zážitek. Zánik masové výroby elektronkových aparatur, ke konci minulého století, zapříčiníl jak obtížnou dostupnost, tak i enormní nárůst cen veškerých elektronkových zařízení. Tím pádem mi nezbylo nic jiného než se začít o elektronková zařízení hlouběji zajímat a začít si konstruovat vlastní elektronková zařízení a doplňky. Mimo to pomáhám i kytaristům a bassistům s opravami a úpravami jejich elektronkových zesilovačů.

A to jsi si to jen tak postavil podle nějakých plánků sám?

Jasně, ze začátku jsem odzkoušel kdejaké schéma, které se mi dostalo do ruky. Pak se rozjel Internet a to množství informací a podnětů narostlo do té míry, že už to nešlo stihnout to všechno pájet. Naštěstí se již několik let znám s pár zkušenými odborníky – nadšenci do elektronkových audio aparatur. Ti mi pomohli hlavně v mých začátcích se zorientovat a najít to podstatné a základní. Dnes s nimi konzultují detaily a fajnšmekroviny, jelikož oni to již kdysi odzkoušeli. Jejich rady mě také často vyvedly ze slepých uliček a ušetřily mnoho času marným bádáním nad něčím, co již bylo vyřešeno před padesáti lety. Pokud jsem chtěl mít kvalitní zařízení, tak jsem si jej musel navrhnout sám. Musel jsem prostudovat mnoho literatury, mnohdy i zahraniční, abych byl vůbec schopen postavit něco smysluplného. Nejtěžší je pak celou konstrukci naladit tak, aby se ti to zvukově líbilo a elektronicky to bylo v pořádku.

Máš nějaký oblíbený pramen?

Prošel jsem několik německých knih a nějaké americké, ale nikde jsem nenašel všechny informace uceleně nebo souhrnně zpracované. Jedna kniha mi nestačila, každá měla své. Přesto bych jako skvost rád vyzdvihl jednu českou knihu Jaroslava Lukeše s názvem "Věrný zvuk". Kniha probírá nejen zesilovače, ale i všechny související obory a tak čtenář dostává komplexní informaci. reproboxy, zesilovače, elektronky, atd. Vše jasně, srozumitelně a detailně popsáno a vysvětleno. Prostě nádhera! Když k někomu přijdu a uvidím v jeho knihovně tuto knihu, tak vím, že si máme o čem povídat. Tuto knihu najdu většinou u všech lidí, kteří o konstrukci zesilovačů něco vědí.

Určitě by potěšilo všechny konstruktéry podobných zesilovačů, kdyby ses jako nakladatel postaral o její obnovené vydání!

Existují v konstrukci zesilovačů i nějaké "finty"?

Právě jednu jsem našel v knize Jaroslava Lukeše. Jedná se například o kompletní vyřešení invertoru s rozdělenou zátěží anebo přesný výpočet velikosti katodového kondenzátoru v zapojení zesilovače se společnou katodou. V žádné jiné literatuře jsem řešení na uvedenou problematiku nenašel. A tady to bylo krásně a jasně vysvětleno.

Obr. 8.1 Kniha Jaroslava Lukeše "Věrný zvuk" ze šedesátých let se stala biblí každého, kdo se zabývá elektronkami.

Máš i nějaké další know-how, o které se s námi můžeš podělit?

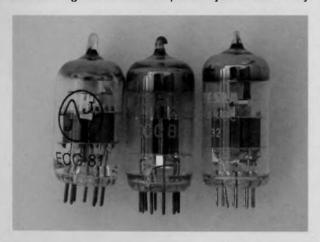
Pro dosažení nejmenšího zkreslení při přenosu a zpracování audio signálu je většinou potřeba se pohybovat v lineárních částech charakteristik elektronek, což vede obvykle k používání velkých napájecích napětí. To vyvolává potřebu používání filtračních i vazebních kondenzátorů, které mohou pracovat bez poškození na velká stejnosměrná napětí cca 300 až 500 V, někdy i více. Nemusím připomínat, že to není běžná součástka, kterou dostanete v kdejaké radioamatérské prodejně a navíc cena je o dost vyšší než jsme zvyklí u nízkonapěťových součástek. To samé platí i pro rezistory, indukčnosti, siťové a výstupní transformátory (ty je nutno si většinou vždy nechat vyrobit na zakázku v profesionální navijárně), patice pro elektronky, spínače a vodiče. Moje rada je ta, že se určitě vyplatí nešetřit na kvalitních součástkách, i když pořizovací náklady jsou někdy enormně vysoké. Odměnou vám

pak je spolehlivý provoz kvalitního vámi navrženého audio zařízení. A o to přeci jde! Ještě bych chtěl dodat, že si každý konstruktér musí uvědomit s čím dělá a že i elektronika se řídí fyzikálními zákony, které je nutno stále dodržovat.

Co tim chceš říci?

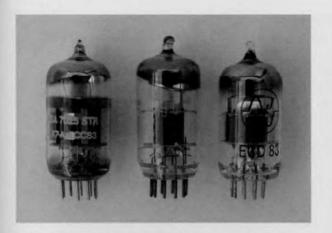
Nesmíš se prostě nechat unést reklamními slogany o perfektnosti součástek či zařízení, když při letmém pohledu na schéma zapojení i méně zkušený elektronik pozná, že zapojení nemůže fungovat, tak jak je inzerováno. To se stává v připadě větších firem, které nakupují součástky ve velkém množství (kontejnery, kamjóny), tím pádem mají nízké výrobní náklady a potřebují opodstatnit před veřejností vysokou prodejní cenu. To znamená, že poukazují na jisté funkce, které sice démonicky nazývají a popisují, ale s funkcí zařízení to opravdu nemá co dělat. Nejčastějším případem je, když výrobci nahradí součástku s jistými parametry levnější součástkou s horšími parametry a v rámci celého zařízení tak zdegradují celkovou kvalitu a funkci celého elektrického designu. Počítají s tím, že většina uživatelů se nevyzná v elektronice a proto tyto podvody neprohlédne. Avšak trh vždy ukáže pravou tvář daného výrobku, často i po několika letech, a takový výrobek se propadne o několik cenových tříd dolů. Zároveň firma ztratí své renomé. Kromě jiného to má ještě důsledek, že "normální" produkty konstruované a otestované podle všech zákonitostí jdou cenově nahoru, protože jsou pochopitelně lepší než ty "opěvované" a nazývané jako "super třída".

Obr. 8.2 Domácí "technická knihovna" Filipa Robovského


Kde ty osobně kupuješ elektronky do svých zesilovačů?

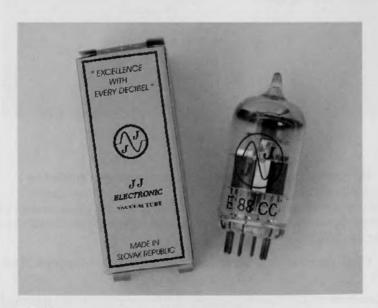
Buď si zajdu do GES electronics, mají prodejnu v Praze na Vínohradech – a já to k nim mám opravdu kousek, nebo si napíšu do JJ Electronic a tam získávám především párované elektronky. Když jsem v USA tak volám do Groove Tubes. Nejsou sice nejlevnější, ale vyznají se a jejich elektronky mě vždy nadchly a nikdy nezklamaly.

Mohl by si čtenářům této knihy sdělit nějaké nezaujaté informace o elektronkách, tedy jak to cítíš ty, s čím nejraději děláš?


Tak nejdříve bych začal s elektronkami do předzesilovačů.

- ECC81 ... často používaná v invertorech nebo jako budič pro pružinový hall v kytarových aparátech, malý vnitřní střídavý odpor, velký zesilovací činitel a větší výkon.
- ECC82 ... s oblibou používaná pro invertor s rozdělenou zátěží, malý vnitřní střídavý odpor, vydrží velký proud, malý zesilovací činitel.
- ECC83 ... nejslavnější a nejvíce používaná elektronka hlavně díky svému velkému zesilovacímu činiteli, používá se jako zesilovač nf napětí a jako invertor v předzesilovacích stupních nástrojových, studiových i domácích aparatur.
- ECC832 ... jeden systém je ECC83 a druhý systém je ECC82. Výhodné pro zesilení a rozdělení signálu invertorem pomocí jedné elektronky.

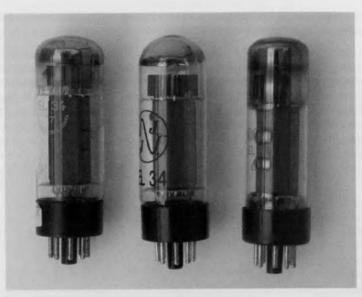
Obr. 8.3 Elektronky do předzesilovačů: zleva ECC81 firmy JJ Electronic, ECC82 bývalé RFT a vpravo E83CC z produkce bývalého podniku TESLA.



Obr. 8.4

Dvojité triody od několika různých výrobců. Na té první zleva – americké – jsou vidět všechny druhy označení pro tento typ: ECC83, 12AX7 a 7025 (nápis STR znamená, že se jedná o produkt firmy Mesa Boogie USA). Uprostřed je klasika z TESLY a vpravo z JJ Electronic.

Obr. 8.5
12AX7EH je elektronka
vyrobená v Rusku pro dřive
americkou, nynl ruskou firmu
ELECTRO-HARMONIX.
Je určena pro americký trh,
proto má značení 12AX7EH,
což je jiné než je v Rusku běžné.


Obr. 8.6 Elektronka E88CC z produkce JJ Electronic.

- **E88CC** ... vysoce kvalitní elektronka pro použití na vstupech jakostních zesilovačů např. pro gramofonové přenosky. Nevýhoda je zvlášt zapojený systém žhavení.
- **ECC99** ... specialita slovenské firmy JJ Electronic. Výkonová elektronka pro použití například ve sluchátkových zesilovačích či jako budič výkonových stupňů. Anodová ztráta 5 W. Noval patice.

Obr. 8.7 Elektronka ECC99 z produkce JJ Electronic.

- EL34 ... Nejslavnější a nejrozšířenější evropská výkonová elektronka s anodovou ztrátou 25 W. Proslavena hlavně britskými kytarovými aparaturami firmy Marshall. Ve východní Evropě hojně používana ve výzbroji "spřátelených armád" ve vysílacích a zbraňových systémech. Možno použít na anodě až 800 V.
- **E34L** ... Obdobné parametry jako EL34, ale o trochu větší anodová ztráta cca 20 %.
- **6L6** ... Svazková tetroda, hojně používaná ve výkonových stupních aparatur Fender, Mesa Boogie, Ampeg a dalších amerických firem. Anodová ztráta 30 W.

Různé provedení baněk EL34: zleva TESLA, JJ Electronic a vpravo RFT. Obr. 8.8

6L6GC z produkce Obr. 8.9 JJ Electronic

KT88 ... Nejvýkonější pentoda pro audio použití. Anodová ztráta cca 40 W. Možno použit na anodě až 800 V.

Jedna výkonová pentoda KT88 se podařila "odpálit" mému kolegovi baskytaristovi Petru Hemerkovi, když byl na evropském turné s hardcorovou skupinou Kevorkian v roce 2002. Při zvukové zkoušce uvedl svůj 200W elektronkový zesilovač (6 × KT88) do chodu aniž by měl připojenou reprobednu k zesilovači. Výsledkem bylo překročení maximálních hodnot anodových ztrát výstupních elektronek a tím defekt jedné z nich. V horších případech dojde k defektu (spálení) výstupního transformátoru.

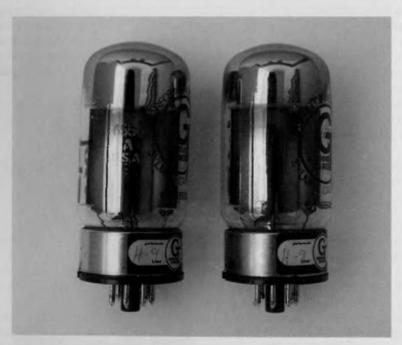
Obr. 8.10 Elektronka KT88, vlevo dobrá a vpravo "odpálená" – viz poslední odstavec kap. 2.3, kde je popsána stručně výroba. Do baňky této elektronky vnikl vzduch a vytvořil bílý oxid barya v gettru.

Toto je klasický a specifický případ chování se elektronkových zesilovačů. Za koncovými elektronkami, následuje skoro vždy primární vinutí výstupního transformátoru. Jeho sekundární vinutí musí být při provozu vždy bezpodmínečně propojeno se zátěží tzn. s reproduktory(em) pomocí reproduktorového kabelu. Ten by měl poskytovat co nejmenší ztráty. Proto se většinou vyrábí na principu silové dvojlinky s co největšími průřezy vodičů z vybíraných materiálů. Nejčastěji se v praxi kytaristům stane to, že se přeruší kontakt v propojovacích konektorech reproduktorového kabelu a sekundární vinutí výstupního transformátoru přijde o svoji zátěž – reproduktor(y). Tím pádem se při přítomnosti nizkofrekvenčního signálu na anodách výstupních elektronek začne na primárním vinutí výstupního transformátoru

indukovat vysoké napětí. To zapřičiní porušení izolace vodiče, z něhož je navinuto primární vinutí výstupního transformátoru. Následuje mezizávitový zkrat, jenž může být dvojího typu s dvojími následky:

- 1. Vznikne-li mezizávitový zkrat primárního se sekundárním vinutím výstupního transformátoru v důsledku porušení (propálení, prošlehnutí) prokladové izolace mezi primárními a sekundárními vinutími výstupního transformátoru, objeví se na sekundárním vinutí výstupního transformátoru vysoké napětí. Jelikož je sekundární vinutí výstupního transformátoru většinou jedním svým koncem uzemněno, jde vysoké napětí přes sekundární vinutí výstupního transformátoru do zkratu. Toto většinou končí buď poškozením (přetížením) napájecích obvodů zesilovače nebo zničením (spálením) primárního vinutí výstupního transformátoru.
- 2. Vznikne-li mezizávitový zkrat v primárním vinutí výstupního transformátoru v důsledku porušení (přehřátí) izolace vodičů z nichž je navinuto primární vinutí výstupního transformátoru, zmenší se zatěžovací impedance primárního vinutí výstupního transformátoru a tím vzroste zatěžování výstupních elektronek. Ty pak začnou pracovat v nadkritických hodnotách (zvyšování anodového proudu a překročení povolené anodové ztráty). Vznikne nadbytek tepla, který jednak mechanicky zdeformuje konstrukci uvnitř elektronky (anoda/katoda/mřížky/žhavení) a za druhé poruší celistvost skleněné baňky elektronky. Vyskytnou se mikroskopické praskliny a netěsnosti. Do baňky elektronky začne vnikat vzduch z okolí. V baňce elektronky, kde bylo vakuum, dojde k ionizací molekul vniklého vzduchu. Vlivem chemické reakce molekul vzduchu a materiálu vlákna žhavení dojde k přerušení žhavicího vlákna. Materiál gett-

ru se snaží zachovat vakuum, ale většinou množství vniklého vzduchu bývá nadkritické a celý materiál gettru zreaguje v oxid baria.



Obr. 8.11 Hudebník Petr Hemerka, kterému se "kouzlo" s elektronkou podařilo

Vnitřek baňky elektronky ztratí své vakuum a elektronka ztratí svojí funkci, jelikož molekuly vzduchu znatelně omezí proudění elektronů v elektronce.

GT-6550A ... Americká obdoba evropské KT88. Liší se charakterem zabarvení zvuku. Vidím, že jsi jeden exemplář tohoto ekvivalentu výkonové pentody KT88 vybral i pro titulní fotografií knihy.

Na něm jsou zajímavé hned dvě věcí. Tou první je nápis "U.S.A." Ten tam není náhodou. Výroba elektronek je velmí náročná na dodržování mechanických a hlavně chemicko-metalurgických parametrů. Proto se v druhé polovině minulého století při zavedení nových technologií pro výrobu tranzistorů a integrovaných obvodů hromadně po celém světě rušily provozy na výrobu elektronek. Zbylo jen pár funkčních továren ve východní Evropě a v Rusku. V Asii sice vznikají nové továrny, ale kvalita jejich produktů je ve srovnání s dřívějšími americkými, anglickými či německými elektronkami velmi nízká. V USA je dnes snad jen jedna provozovna a to na výrobu speciálních typů elektronek. Čas od času se v nabídce amerických obchodníků objeví elektronky ze skladu. Tyto elektronky jsou vyrobené před několika desítkami let tzn. původními originálními technologiemi na tehdejších strojích. Obchodníci označují toto jako NOS (New Old Stock – Nově staré zásoby), což lze zjednodušeně popsat tím, že někdo kdysi nakoupil levně kontejner elektronek,

Obr. 8.12 Párované GT-6550A

které pak zamknul na několik desítek let do skladu a když po nich začal být hlad a nedostatek na trhu, tak je prodal distribuční firmě, například Groove Tubes. Ti je proměřili, roztřídili a zařadili do katalogu. V praxi to znamená, že takovéto NOS elektronky byly vyrobeny před dvaceti, třiceti lety, ale nebyly zatím používány, takže jsou pro zákazníka úplně "nové".

Druhou zajímavostí je nápis dole na elektronce "Performance H-9". Nejen Grooves Tubes, ale i další obchodníci s elektronkami si po změření parametrů každého kusu eletronky, roztříďují elektronky do několika kategorií dle toho, jaké hodnoty parametrů u dané elektronky naměřili. Například firma Groove Tubes používá stupnici 1 až 10, což znamená, že elektronka s nižším číslem dříve limituje signál (někdy vhodné pro zkreslený zvuk elektrické kytary) než elektronka s vyšším číslem, která v daném zapojení limituje signál později (vhodné pro většinu koncových zesilovačů a High End výrobky). Firma Mesa Boogie používá obdobné třídění, ale místo čísel označuje elektronky barevným kódem. Takový "páreček" těchto "lamp" stojí kolem 300 USD.

Když jsi u toho párování, měříš si nějak elektronky ve svých skromných amatérských podmínkách?

Obr. 8.13 Tester elektronek TESLA

Obr. 8.14 Celkový pohled na tester elektronek

Momentálně mám půjčený od jednoho známého takový tester, který je ještě z doby socialismu. I když je to jen tester pracující na principu vyhodnocování katalogových údajů, tak na mě působí jeho laboratorně-konstrukční dokonalost, propracovaná do nejmeších detailů. To musely vymyslet osvícené české hlavy a sestavit zlaté české ručičky. Výroba elektronek je velmi náročná a na kvalitě se podilí mnoho faktorů najednou. Proto není žádným tajemstvím, že toleranční pásmo od výrobců elektronek je v rozmezí plus mínus 25 %.

Pro přesné měření parametrů elektronky (a tím i výběr té pravé z několika kusů) je zapotřebí si postavit připravek, který bude suplovat provozní podmínky

navrhnutého zapojení, pro něž je elektronka vybrána. Jedině tak se dá změřit anodový proud a strmost elektronky v daném zapojení, což jsou údaje, které konstruktéry asi nejvíce zajímají.

Chceš říci něco na závěr čtenářům této knihy?

Přeji všem krásné chvíle při studiu a následných stavbách elektronkových zesilovačů. Slovy nelze popsat zážitky z hudby, jež se dostavují jen při poslechu přes elektronkové aparatury.

Tímto chci poděkovat následujícím elektroníkům Richardu Ledvinovi a René Čepákovi, kteří mi vždy poskytli správné odpovědi na mé otázky, jenž se objevují po celou tu dobu mé záliby v elektronkách.

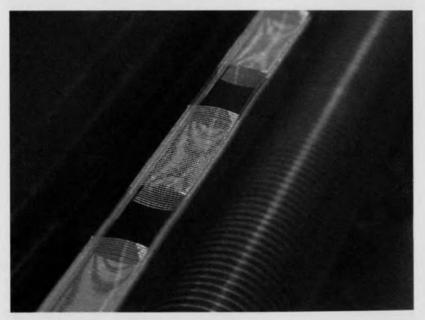
Filipe, děkuji Ti za rozhovor. Myslím, že bude skutečně čtenářům knihy přínosem.

S Mgr. Filipen Robovským rozmlouval Libor Kubica, šéfredaktor a spolumajitel nakladatelství BEN – technická literatura.

Malá exkurze ve firmě JJ ELECTRONIC aneb výroba kvalitních elektronek na Slovensku

Jako redaktor jsem měl za úkol dokončit tuto knihu o elektronkách. Chtěl jsem ji však obohatit o něco neobvyklého a zajímavého. Proto jsem si s představiteli firmy JJ Electronic domluvil návštěvu jejich firmy v Čadci.

Musím přiznat, že má představa o výrobě elektronek byla mlhavá a především zcela mylná. Když jsem uviděl samotnou výrobu, zcela jsem ustoupil z názoru, že elektronky může bez problémů vyrábět kdokoliv a kdekoliv na světě. Ale to již dále sami pochopíte z popísu mé návštěvy z léta 2003.


Obr. 11.1 Sídlo firmy JJ electronic, jak jsem ho viděl osobně v létě 2003 – ještě před celkovou úpravou exteriéru

Prvním překvapením byla po mém přijezdu do Čadci byla moderně vypadající budova, která již do dálky byla nápadná svojí zářivě modrou barvou. Původně jsem očekával spíše "socialistický podnik" nebo malou firmičku regionálního významu, ale opak byl pravdou. Po prvních krocích v budově, kde ještě probíhala rekonstrukce, bylo jasné, že vedení firmy téměř veškerý získ investuje do dalšího rozvoje firmy.

Přivítal mě ředitel a majitel v jedné osobě pan Ján Jurčo. "Předal" mě ihned svému kolegovi Ladislavu Liščákovi , který mě nejdříve provedl po celé výrobě.

Odložil jsem si tašku v takové menší tmavé hale a prohlídku jsme začali ve výrobně kovových částí elektronek. I když některé stroje na první pohled připomínaly staré zelené soustruhy, byly pečlivě udržované. Protože pro výrobu jakékoliv části elektronky je zapotřebí velké přesnosti, věnuje se strojům patřičná péče. Mechanické díly do elektronek totiž nelze vyrábět na čemkoliv. Podobné automaty dnes již nikdo na světě nevyrobí za rozumný finanční obnos, proto drtivá většina strojů pocházela z někdejší Tesly Rožnov, kde se kdysi elektronky vyráběly.

Ve výrobní hale bylo několik pecí, které slouží k vyžíhání kovových polotovarů. Kovové díly obsahují ve svém tepelně nezpracovaném stavu např. nepatrné vzduchové bubliny, vodu atd., což by po zapojení elektronky do provozu znečistilo vakuum uvnitř ní. Mezi další důvody tepelného zpracování patří odstranění vnitřního pnutí atd.

Obr. 11.2 Navíjení mřížek

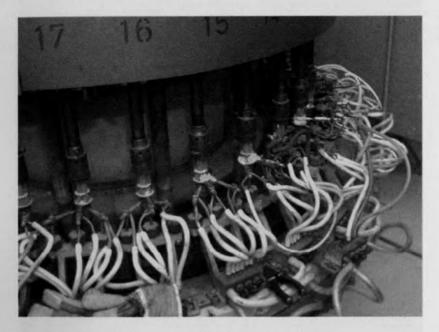
Nejvíce mě zaujaly navijecí automaty pro mřížky elektronek. Velmi tenký drátek se musí navinout v přesně definovaném průměru, každý závit drátku se dále musí zalisovat do nosných kovových tyček a na konci se navíc musí s jednou nosnou tyčkou svařit. Skutečně velmi jemná a přesná mechanika.

V jiné částí haly byl karuselový automat na výrobu patice, resp. skleněné patky elektronky s kovovými vývody. Každý hořák měl svoji teplotu, svoji funkci. Sklo bylo svým složením opět speciální. Vývody, také speciálně tepelně upravené... Když jsem na vlastní oči viděl složitost výroby na tomto stroji (jednalo se cca o dvacet operací), okamžitě mi došlo, proč patice elektronek JJ Electronic vypadají velmi vzhledně, např. oproti ruským elektronkám. A tak to bylo po celou dobu prohlídky výroby. Precizní práce se kombinovala s dlouholetým know-how.

Obr. 11.3 Karuselový automat na výrobu skleněných patic

Minuli jsme i jeden provoz manuální kompletaci elektronek, kde byla zachovávána bezprasná atmosféra a sterilní prostředí. Podle slov pana jsou na toto pracoviště vybírány pracovnice, které se téměř nepotí nebo se potí jen minimálně. Sebemenší výpary lidského potu mají nedozírný vliv na kovové části uvnitř elektronek, resp. chemická reakce potu jakožto agresivní chemikálie by znehodnotila kovový povlak dílů a zředila by vakuum po zahoření.

Poté jsme prošli jednou halou kompletace vnitřních částí elektronek, kde však již nebylo zapotřebí steritní prostředí.



Obr. 11.4 Pracoviště pro kompletaci elektronek

Obr. 11.5 Výsledek kompletace

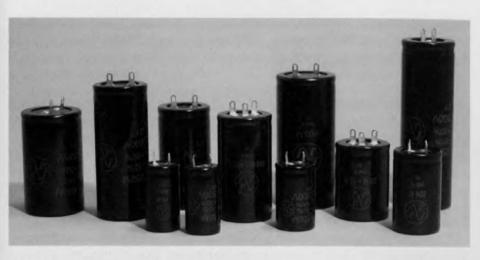
V jiné hale další dva karuselové automaty (jeden na malé, druhý na velké elektronky) finalizovaly výrobu. Karusely vypadaly obdobně jako ty na výrobu patic. Počet operací byl o něco vyšší, technologický proces složitější: intenzivně, přesto citlivě nahřát baňku, spojit s paticí, vysát vzduch,

Obr. 11.6 Karuselový automat na finální kompletaci elektronek

Mě se v jedné poloze na tomto stroji nejvíc líbila necelou sekundu trvající modrá záře uvnitř elektronky, což bylo několik poloh před dokončením celého procesu na karuselu. Po opuštění této polohy již elektronky žhnuly klasicky červeně, než je automat "vyplivl" někam pryč – do pece, kde se opět odstraňovalo vnitřní pnutí po tepelně náročném zpracování.

Poté se na manuálním pracovišti elektronkám vyčistily vývody. Byly totiž po všech tepelných operacich jaksi "omšelé". Dále jsme šli do zahořovny, kde je nejen nutný test pro nekonečné řady elektronek, ale i vybírání elektronek na parametry. Odtud již opouštěly elektronky halu v elegantních žlutomodrých krabičkách, pečlivě uspořádané ve velkých papírových krabicích.

Obr. 11.7 Zahořovna


Obr. 11.8 Elektronky čekající na své zákazníky

Ještě než jsem se vrátil do kanceláře k panu řediteli, zastavil jsem se pro svou tašku v jedné hale, které jsem předtím nevěnoval tolik pozornosti. Průvodce mi však ukázal elektronkové zesilovače nenápadně stojící v polici a čekající na své budoucí zákazníky.

Obr. 11.9 Poslušně stojící oživené zesilovače z kusové výroby

Firma JJ Electronic se také zabývá kusovou výrobou zesilovačů a to špičkových parametrů. Že dávají elektronky do zesilovačů vlastni, to je vcelku pochopitelné. Překvapilo mě, že v JJ Electronic mají nejen sériovou výrobu vícenásobných elektrolytických kondenzátorů v dalším patře budovy, ale také kusovou výrobu kvalitních transformátorů do těchto zesilovačů. Pro ty, kteří v "trafech" alespoň trochu vyznají: 24 sekcí, C jádro, plechy tloušťky 0,13 mm ze speciálního materiálu... Z toho vyplývá, že kvalitní zesilovač musi být sestaven z kvalitních dílů v kusové výrobě, kdy se s každým kusem skutečně "mazlí". A kdyby jenom to, zesilovače mají svůj osobitý design. Tomu všemu pak odpovídá výsledná cena, která zesilovače předurčuje zahraniční klientele.

Obr. 11.10 JJ electronic vyrábí nejen elektronky, ale i široký sortiment elektrolytických kondenzátorů, především vícenásobných, které nacházejí své uplatnění v elektronkových zesilovačích

Obr. 11.11 Zesilovač JJ322 na pracovním stole

Protože jsem se o výstupní transformátory dále zajímal, získal jsem od pana Liščáka před vydáním knihy dopis, který zde přeliskuji. Z něho jednak vyzařuje fundovanost lidí pracujících v JJ electronic a také hlavně náročnost při zpracování každého dílu zesilovače.

Výstupné transformátory zosilňovačov JJ electronic sú na C-jadrach. JJ 322 a JJ 239 majú dvojité C-jadro (jadrový typ) a JJ 828 má jedno C-jadro s dvomi cievkami (plášťový typ). Plechy na jadrá sú dovážané a vo firme Technotron F-M valcované na 0,13 mm, kde sú aj navíjané a žíhané. Jadrá sú v súčasnosti delené v JJ na elektroiskrovej rezačke. Rezné plochy sa potom zaleštia a natrú sa leptacím roztokom, aby sa odstránili skraty medzi jednotlivými plechmi na reznej ploche. Po uplynutí stanovenej doby sa styčné plochy opláchnu, zneutralizujú a vysušia. Pred montážou jadier na cievky sa jadrá premerajú bez a s vložkou vzduchovej medzery. Pri podtolerantných jadrách prebehne celý proces od brúsenia znova. V niektorých jadrách totiž zbytkové pnutie po navíjaní spôsobí po rozrezaní nesúmemosť rozovretia medzery.

Cievky našich výstupných transformátorov nám podľa nášho návrhu navíja Vinuta s. r. o. z Rajec. Pre JJ 322 má cievka štyri primárne a 8 bifilárnych sekundárnych vinutí usporiadaných tak, aby vzájomná kapacita a rozptylová indukčnosť boli čo najmenšie. Napríklad pri JJ 322 je $L_{prim} = 22$ H je $L_{sp} = 3$ mH. To umožňuje pri výkone -3 dB f_H minimálně 50 kHz. Cievka výstupného trafa pre monobloky JJ 239 má podobnú topológiu, len prierez jadra je 17 cm², miesto 25 cm² u JJ 322 a väčší prevod. U týchto výstupných transformátoroch sú vzduchové medzery optimalizované na 4 × 0,2 mm u JJ 322 a 4 × 0,13 mm u JJ 239.

Výstupné trafo JJ 828 je plášťový typ s jedným C-jadrom a dvoma cievkami. Každá má 6 primárnych sekcii, z toho dve spätnoväzobné do katód KT88, a 4 bifiláme sekundárne sekcie. U_L odbočka je na 50 %. Vzduchová medzera je 2 × 0,05 mm, i keď je JJ 828 dvojčinný. Linearizuje to priebeh závislosti permeability a tým aj L_{prim} na vybudení. Podiel basovej zložky pri rôznych hlasitostiach je stály.

Pri návrhu výstupného trafa je dôležitá i voľba materiálu na jadro. Výber materiálu je dobrý čo do známeho počtu typov, ale horši čo do dostupnosti.

Permaloy plechy alebo pásy PY36, prípadne PY50, majú výborné magnetické vlastnosti pre výstupné trafa. Vysoká počiatočná permeabilita, jej veľmi malý nárast na náraste intenzity mg poľa (vybudení), vysoký merný odpor (malé straty vírivými průdmi) a dobré vlastnosti i pri hrůbkach 0,05 mm sú veľkou prednosťou. Negatívom je prepad permeability (a teda i L_{prim}) pri neopatrnom mechanickom namáhaní, pri skladaní vyžihaných El plechov, ako i nutnosť zložito žíhať toroidné jadrá po ich navinutí z PY pásky. Po žíhaní je totiž nutné popůšťanie s presne definovaným priebehom poklesu teplôt v čase. Dostupnosť permaloy plechov je u nás po zrušení jeho výroby v Kovohutách Rokycany obmedzená.

Materiálom budúcnosti môžu byť amorfné kovové pásky (kovové magnetické sklá/) na báze Co-Si B. Dnes majú síce nižšiu maximálnu indukciu v nasýtení (pod 0,6 T), ale ostatné parametre sú výborné a sú vhodné pre nízkovýkonové napr. vstupné transformátory.

Železové transformátorové plechy, dnes takmer výhradne Eo a GOSS, sa použivajú pre všetky tvarové aplikácie, najmä pre toroidy a C-jadrá. Majú vysokú hodnotu max. indukcie (až 1,9 T), nízke memé straty a vysokú počiatočnú permeabilitu (cca 3000). Majú však malý memý odpor a pre zmenšenie strát vírivými průdmi treba používať plechy hrůbky 0,13–0,18 mm. Negatívom je veľký nárast permeability so sýtením (vybudením), čo sa dá ale eliminovať vzduchovou medzerou.

Pri voľbe typu jadra je niekoľko možností. Klasické je El jadro má možnosť voľby vzduchovej medzery, je lacné pre takmer 100% využiteľnosť pri strihaní a je všeobecne dostupné. Nevýhodou u dnes používaných orientovaných El plechov je spojka časti E, ktorá ma smer domén kolmý na magnetický tok, čo zavádza zvýšený magnetický odpor do obvodu. Pre rezy M platí to isté ako pre El, ale dnes sú menej používané. El plechy sú obvykle 0,35–0,5 mm hrubé, čo je pre kvalitné transformátory veľa. Výborné sú El i M plechy z PY36 (PY50), najmä pre jednočinnú triedu, avšak sú málo dostupné.

Výstupné transformátory na toroidných jadrách majú malú rozptylovú indukčnosť pri zrovnateľnom počte sekcii, najmenší merný objem a nenáročnosť na umiestnenie v zosilňovačoch. U toroidného VT sa však horšie realizujú viacodbočkové, viacsegmentové návrhy a prípadná vzduchová medzera pre jednočinnú triedu v hrúbkach desatín mm sa musí lepiť pred navíjaním, čo je obťiažné. Toroidné jadra pre VT sa obvykle navíjajú z orientovaných plechov hrúbky 0,05–0,27 mm. Pod 0,1 mm však u nich rýchlo klesá permeabilita. Pre kvalitné toroidné jadrá výstupných transformátorov sa používa pás z PY36, čo je pre push-pull zosilňovače najlepšia voľba.

C-jadrá sa v amatérskych konštrukciach výstupných transformátorov používajú menej. Pritom v Čechách sa výrába kompletný sortiment C-jadier z orientovaných plechov, včetne jadier pre náhradu plechov EI, M a UI. V bežnej produkcii sú kvalitné orientované pásy nielen 0,27 mm, ale i 0,18 mm a na zakázku i tenšie (0,1–0,13). Ich delenie a brúsenie styčných plôch je pre kvalitné výstupné transformátory dostatočné. Výhodou C-jadier je možnosť návrhu symetrického prevedenia výstupného transformátora u plášťového typu, jednoduchá realizácia vzduchovej medzery a malý merný objem, podobne ako u toroidov. Ani montáž C-jadier nemusi byť strašiakom. Stačí Eska páska a kompletnú zostavu zaliať do primeranej krabičky (+2 cm na každý rozmer) niektorou polyuretánovou zalievacou hmotou. Stačí i kvalitná PURpena. Oteplenia dobre navrhnutého VT sa nemusíme obávať.

Toto bol len skrátený pohľad na materiály pre výstupné transformátory. Návrh vinutí je samostatná kapitola a kompletný materiál na riešenie výstupného transformátora by vyšiel na niekoľko desiatok strán.

Po necelé hodině prohlídky jsem se konečně dostal do kanceláře k panu Jurčovi, kde jsme všichni tři zapředli hovor.

Jak jste začínali? Můžete mi prosím něco říci o historii Vaší firmy?

Výroba elektróniek v Čadci bola zahájená v roku 1993. Celá výroba bola prevedená z bývalej Tesly Třinec. V Tesle Třinec výroba elektóniek bola ukončená v roku 1998 a tieto stroje boli niekoľko rokov ponúkané na odpredaj.Rozhodol som sa technológiu zakúpiť a stroje presunúť do Čadce. Postupne sme začali oživovať tehnológiu a zháňať kvalifikovaných pracovníkov. Podarilo sa mi presvedčiť niekoľko mojich kolegov z bývalej Tesly, aby išli so mnou do konportu. Títo ľudia, ktorí ponuku prijali, dnes pracujú na vedúcich miestach pri výrobe elektróniek, takže bola zachovaná kontinuita a dnes tento team má viac ako 30ročnú skúsenosť s výrobou elektróniek.

Obr. 11.12 Překrásný noční pohled na současné sídlo firmy JJ electronic (z archivu JJ electronic)

Jaké elektronky jste začali vyrábět jako první a jaké připravujete?

Začínali sme s EL34 v roku 1993. Za tri mesiace tu bol typ ECC83 a za niekoľko mesiacov EL84. Postupne nabiehal celý sortiment tak, ako je tu dnes. Každý rok pripravíme do výroby jeden až dva typy úplne nových elektroniek. To znamená, že vlani jsme počali 2A3, letos v januáru GZ34, v jeseni tohto roku dáme do výroby 6V6. Klasická 6V6+, ktorú vyrába konkurencia je zhruba na 350 V, špička pochopitelně na 450 V. My ju chceme samozrejme vyrobiť na 450 V a špičku na 650 V. To znamená, čím vyššie anódové napätie, tým viac muziky. To sú priania naších naiväčších amerických odberateľov.

Takže skutečně, co žádá trh, tudy vede cesta?

Samozrejme, tak to musí byť. Tie odborné diskuzie o tom sa viedli vždy na odborných výstavách, či už je to ... v Las Vegas, ... v Los Angeles, ... v Franfurkte, v Tokiu alebo Londone. Tam sa všetky tieto veci prediskutujú. Sú tam proste všetci najväčší hráči na trhu s elektrónkami. Nápady sa jednoducho berú od zákazníkov

Obr. 11.13 Odborné diskuze na veletrhu (z archivu JJ electronic)

Ale náklady na přípravu jedné elektronky, to musí být docela velká částka.

Musite vedieť, akú sériu chcete urobiť. Čím robite väčšiu sériu, tým sú náklady väčšie. Keby ste chcel ručne klepať nejakých sto, dvesto kusov, tak pripravky budú lacnejšie, ale pracnosť vysoká. Čím chcete, aby bola cena nižšia, tak musíte na začiatku dať viac do pripravkov. Takže príprava veľkosériovej výroby jedného typu je priemerne 2 až 4 miliónov korún. Keď robíme 700 000 lámp ročne, tak musíme takto investovať.

Jak jste velký podnik oproti celému světu, jak si stojíte?

Sme tak stredne veľký podnik v porovnaní so svetom. Vyrábame 60 000 elektroniek za mesiac.

Väčšina ide na export do USA. Naši najväčší zákazníci sú práve z USA. Napriklad časopis Vacuum Tubes. Skúste si ho pozrieť na internete. Sú tam hodnotené lampy všetkých výrobcov. Je tam hodnotená aj KT88 a mala by byť najlepšia.

Obr. 11.14 Veletržní dění v USA (z archivu JJ electronic)

Takových elektronek, vůbec mi to nepřipadalo!

Nie je to také jednoduché, vyrábať elektrónky. Musíte mať kompletne zvládnutú výrobu, vrátane zamestnancov. Je treba dodržiavať aj disciplínu. Nie je to žiadna sranda. Niekde niečo zanedbáte a môžete celú sériu vyhodiť.

Já, jak jste mě provedl tou výrobou, zkrátka myslel jsem si, že je to vše jednodušší.

Musíte mať zvládnuté technológie pre výrobu skleneného vylisku. Len sí uvedomte, že tavíte sklo a do toho rôzne kovy. Každý tento materiál má inú teplotnú dilatáciu a zatavovanie musí mať vákuovú tesnosť.

Všetky materiály musíte žíhať vo vákuu alebo v ochranných inertných atmosférach. Pri týchto procesoch musíte z materiálov odstrániť plyny, ktoré by mohli zničiť elektrónku v prevádzke. Ďalej je nutné dodržiavať pri montáži vákuovú hygienu.

Napríktad prijmete ženu, ktorá má vysokú agresivitu nielen potu ku kontaktom, ale aj agresivitu vyžarujúcu zo seba a celú výrobu Vám zničí.

Takže i ženy do výroby si vybíráte...

...samozrejme len na určité operácie. Neuškodí to lampe koncovej, ktorá pracuje s veľkými hodnotamí prúdu, ale pri takých žobrákoch, kde tečie nula nula nič, chlóry, ktoré pochádzajú z potu, dokážu zničiť celú výrobnú sériu... On za to ten človek nemôže, ale je to tak.

Napríklad v dobe, keď sme ešte pracovali v Tesle Rožňov a vyrábali magické oká, tak ženy, ktoré mali menštruáciu (vtedy je zvýšená agresivíta výlučkov), tie nemohli vtedy pracovať. Nám nevadí zrnko prachu, ďaleko najhoršie sú chemikálie z človeka.

Podle vašeho katalogu je všechno audio. Děláte také něco pro vf?

Nielen audio. Vyrábajú sa vo svete, ale nie u nás. Akože nie vf? Napríklad ECC88 je lampa, ktorá bola pôvodne vyvinutá do kanálového voliča, takže je to vysokofrekvenčná lampa. Lampa ECC83 vôbec nebola vyvinutá pre audio. Bola vyvinutá pre prvé až tretie pásmo, pre predzosilňovače a kanálové voliče. Zistilo sa, že sú výhodné pre audio, tak sa používajú.

No keď sa všeobecne povie vf, tak sa tým myslia samozrejme vyššie frekvencie. A Amerika chce len audio. Nebyť amerického trhu, tak by sme boli...Viac ako 65%, no, teraz 70% našej produkcie ide na americký trh. Európsky trh nie je taký.

Ale přichází to. Myslím, že to přichází.

V 60. rokoch sa začalo rozprávať o tom, že elektrónky zaniknú. V 70. rokoch boli názory rovnaké. Samozrejme, že takmer vo všetkých oblastiach boli elektrónky nahradené a dodnes hrajú PRIM v musike a HI-END priemysle. Taká elektrónka má mnoho nevýhod, je príliš veľká, má vysokú spotrebu energie a kratšiu životnosť ako polovodiče. Napriek tomu a hlavne pre jej zvuk ju ľudia nekonečne milujú. V nedávnej minulostí napr. v Amerike alebo Anglicku ju používajú nepretržite. V Nemecku, Japonsku, ale i u nás, bola nahradená polovodičmi. V posledných rokoch i v týchto teritóriach sa ľudia k elektrónkam opäť vracajú.

Obr. 11.15 Zesilovač JJ 243 v černo-stříbrném provedení. (z archivu JJ electronic)

Jeden návštevník, ktorý k nám do stánku prišiel, už za dverami spoznal z čoho sa hrá, spoza rohu, z pätnástich metrov to počul. "To je balzám pre uši", povedal. Aj iní boli z tých lámp, z toho zvuku nadšení. Vyskakovali, jačali, šaleli. Ľudia doma počúvajú hudbu na tranzistoroch, tam prídu a počujú niečo, čo je úplne iné... A jeden Holanďan, každú hodinu prišiel na desať minút a rovnako povedal, že je to balzám pre uši. Ľudia sa vracali, pretože to bola pohoda. Bolo poznať, ze je to iné...

Děkuji Vám moc za těch pár chvil, co jste mi mohli věnovat. Ještě jsem si vzpomněl, zda bych v knize nemohl přetisknout schéma alespoň jednoho vašeho zesilovače. Skutečně kvalitního zesilovače, který opuští tady ty brány Vašeho podniku.

No to by nemal byť problém. My tie schémy netajíme. Konečne, sú v sprievodnej dokumentácií zosilňovačov. Kvalita je však predovšetkým v použítých komponentoch.

Děkuji moc. Napadá mě ještě taková otázka: Posíláte i kusové zásilky po světě?

Áno, ale len na predplatbu. Rozosielame do celého sveta od jedného kusu vyššie. V Českej republike máme distribútora, ktorý zásobuje predajne, napriklad také, ako je GES electronics a podobné. Takže aj český zákazník môže naše elektrónky ľahko zohnať.

Děkuji za zajímavý rozhovor a za prohlídku firmy. Nashledanou.

Dovidenia.

S majitelem a ředitelem firmy JJ Electronic Jánom Jurčom a šéfkonstruktérem zesilovačů Ladislavem Liščákem rozmlouval Libor Kubica, šéfredaktor a spolumajitel nakladatelství BEN – technická literatura.

PLOŠNÉ SPOJE

konstrukce	označení pl. spoje	strana
Hybridní koncový zesilovač	BEN 0149	62
Korekční předzesitovač	BEN 0150	66

Originální klišé pro výrobu plošných spojů jsme předali firmě **SPOJ**. V objednávce postačí uvěst označení plošného spoje, tj. BEN 0149.

Pro zájemce, kteří si plošný spoj budou chtít vyrobit sami, je klišé otištěno přímo v textu a na internetové adrese knihy je ke stažení ve formátu TIF. Vše je pozitivní, tj. černá je spojový obrazec, roztišení 300 dpi v měřitku 1 : 1.

Kontaktní adresa:

SPOJ - výroba plošných spojů, Nosická 16, 100 00 Praha 10

tel, 274 813 823, mobil 604 853 525

e-mail: spoj@volny.cz

Internet: http://www.volny.cz/plspoj

oteviraci doba: Po - Čt 8.00 - 11.00 a 16.00 - 18.00 hod., Pá 8.00 - 11.00

ELEKTRONKOVÉ ŠASI

Dlouho jsme hledali firmu, která by byla ochotna vyrobit elektronkové šasi dle předlohy ze str. 40. Nakonec jsme byli sice úspěšní, ale překvapila nás tak trochu cena. Pokud se nám ozve alespoň dvacet zájemců, je šance, že se umoří vstupní investice na naprogramování stroje. V tomto případě by se cena pohybovala okolo 500 Kč za 1 ks šasi dle následující specifikace (informace o ceně je z konce roku 2003):

- materiál pozinkovaný plech tl. 1,5 mm
- laserem řezané otvory
- ohnutí šasi do tvaru vaničky

V připadě zájmu se prosím ozvěte na do naší redakce, nejlépe prostřednictvím e-mailu. Do předmětu zprávy uveďte "Lampárna". Požadavky budeme evidovat, jakmile se nahromadí potřebný počet, zadáme výrobu.

Na internetové adrese knihy je rovněž k dispozici anonymní anketa pro předběžný průzkum. Tam ji v podstatě můžete sledovat on-line.

ELEKTRONKY, TRANSFORMÁTORY KONDENZÁTORY a další příslušenství

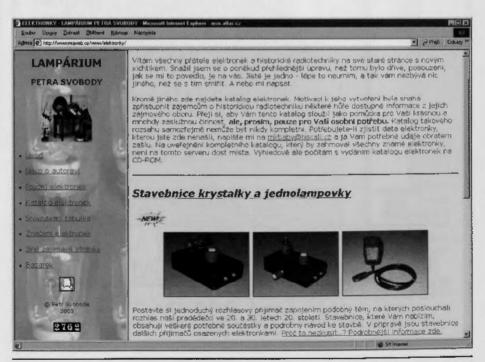
V obchodní síti GES Electronics, mají ucelený sortiment pro konstruktéry s elektronkami. Jak je patrné z jejich internetové nabídky na http://www.ges.cz, GES Electronics je největší prodejce firmy JJ Electronic v České republice. Sám autor této knihy si zakoupil výstupni transformátor k elektronkovému zesilovači právě v GES Electronics.

V jejich internetovém obchodě vše naleznete pod skupinou sortimentu:

27. ELEKTRONKY A JEJICH PŘÍSLUŠENSTVÍ

Elektronky JJ ELECTRONIC Přijimací a zesilovací elektronky Usměrňovací elektronky

Patice


Transformátory

Kondenzátory pro napájeci zdroje

Katalogy elektronek

Zapojení elektronkových zesilovačů

Elektronkový příznivec, ing. Vladimír Fabíni, naší redakci ještě před vydáním knihy upozornil na jednoho výrobce kvalitních tranformátorů pro elektronkové zesilovače, švédskou firmu Lundahl – http://www.lundahl.se. Cenové relace transformátorů (ze očekávat spíše ve vyšší hladině. Konstrukční článek zesilovače s těmito transformátory vyšel časopise Elektor Electronic 4/2003 v Německu.

MCU Tube Collection

- Monotématické DVD věnované výhradně elektronkám
- 7000 katalogových listů ve formátu PDF, cca 20 000 elektronek
- Převodní tabulky evropských a amerických typů
- Přehledové katalogy
- Zapojení patic
- Další odborná literatura věnovaná elektronkám
- Odkazy na informační zdroje o elektronkách v síti Internet
- Předpokládaná prodejní cena cca 250 Kč vč. DPH

MCUserver – <u>www.MCU.cz</u> tel. 604 281 263

Veškerá technická a počítačová literatura pod jednou střechou

Adresy prodejen technické literatury

PRAHA 10, Věšínova 5, tel. 274 820 211, 274 818 412 PRAHA 1, Jindřišská 29, tel. 224 398 387 PLZEŇ, sady Pětatřicátníků 33, tel. 377 323 574 BRNO, Cejl 51, tel. 545 242 353 OSTRAVA. Českobratrská 17, tel. 596 117 184

centrála: BEN, Věšínova 5, 100 00 PRAHA 10

zásilk. služba: tel. 274820411, 274816162, fax 274822775 tel. 274820211, 274818412, fax 274822775

Internet: http://www.ben.cz

adresa knihy: http://shop.ben.cz/default.asp?kam=detail.asp?id=121131

e-mail: knihy@ben.cz (objednávky zboží)
redakce@ben.cz (připominky ke knize)

CENTRÁLA

Věšínova 5, 100 00 PRAHA 10 V naši centrále jsou soustředěna všechna oddělení: prodejna sklad

zásilková služba distribuce nakladatelství

Po - Pá 9.00 - 18.00 So 9.00 - 12.00

Pouhých 200 metrů od stanice metra "Strašnická"!!

Pár slov o nakladatelství

Nakladatelství BEN – technická literatura se věnuje vydávání převážně počítačové a elektrotechnické literatury. Nakladatelství je součástí stejnojmenné firmy, která se zabývá prodejem a distribucí veškeré technické a počítačové literatury, jež v poslední době v české republice vyšla. Dále pak prodejem a distribucí zejména původních českých titulů na CD ROM a DVD. Přehledy české literatury – ediční plány (katalogy), vydáváme několikrát ročně, na vyžádání je zasíláme poštou.

Celková nabídka je soustředěna do několika specializovaných prodejen.

Adresa této knihy na Internetu:

http://shop.ben.cz/default.asp?kam=detail.asp?id=121131

Jaroslav Vlach, Viktorie Vlachová

LAMPÁRNA aneb Co to zkusit s elektronkami?

Vydalo nakladatelství BEN – technická literatura, Praha 2005 1. dotisk 1. vydání

Vedoucí nakladatelství Libor Kubica

Odpovědný a technický redaktor Libor Kubica

Odborní lektoři Ing. Jiří Hozman, Petr Svoboda, Richard Ledvina, Mgr. Filip Robovski

Sazba Alena Zajícová, Libor Kubica

Kresby Viktorie Vlachová Obálka Libor Kubica

elektronky pro fotografii na obálce zapůjčil Petr Svoboda

Rozsah 152 stran

Tisk PB tisk s. r. o.

objednací číslo 121131

EAN 9788073000912 ISBN 80-7300-091-1

doporučená cena 199 Kč

JJ ELECTRONIC

Excellence with every decibel

